Near-field Atmospheric Dispersion Modeling: A New Approach for the Two-dimensional Steady-state Advection-Diffusion Equation Using Fractal Derivative

IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
José Roberto Dantas da Silva, Paulo Henrique Farias Xavier, Davidson Martins Moreira
{"title":"Near-field Atmospheric Dispersion Modeling: A New Approach for the Two-dimensional Steady-state Advection-Diffusion Equation Using Fractal Derivative","authors":"José Roberto Dantas da Silva,&nbsp;Paulo Henrique Farias Xavier,&nbsp;Davidson Martins Moreira","doi":"10.1007/s00024-024-03624-8","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents a method for the analytical solution of the fractal advection-diffusion equation, considering the Hausdorff derivative to maintain dimensional consistency, so that is possible to simulate the atmospheric pollutant dispersion in the Planetary Boundary Layer (PBL). The results show that the fractal parameter is a function of atmospheric stability, explicitly depending on the relationship between friction velocity and convective velocity (<span>\\({{u_{*} } \\mathord{\\left/ {\\vphantom {{u_{*} } {w_{*} }}} \\right. \\kern-0pt} {w_{*} }}\\)</span>), and the inclusion of fractal derivative in the atmospheric dispersion equation improves the description of the turbulent transport process in the near-field region.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"182 1","pages":"223 - 233"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03624-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a method for the analytical solution of the fractal advection-diffusion equation, considering the Hausdorff derivative to maintain dimensional consistency, so that is possible to simulate the atmospheric pollutant dispersion in the Planetary Boundary Layer (PBL). The results show that the fractal parameter is a function of atmospheric stability, explicitly depending on the relationship between friction velocity and convective velocity (\({{u_{*} } \mathord{\left/ {\vphantom {{u_{*} } {w_{*} }}} \right. \kern-0pt} {w_{*} }}\)), and the inclusion of fractal derivative in the atmospheric dispersion equation improves the description of the turbulent transport process in the near-field region.

Abstract Image

近场大气色散建模:二维稳态平流扩散方程的分形导数新方法
本文提出了一种分形平流扩散方程的解析解方法,考虑Hausdorff导数以保持量纲一致性,从而可以模拟大气污染物在行星边界层(PBL)中的扩散。结果表明,分形参数是大气稳定性的函数,明确地依赖于摩擦速度和对流速度之间的关系(\({{u_{*} } \mathord{\left/ {\vphantom {{u_{*} } {w_{*} }}} \right. \kern-0pt} {w_{*} }}\)),在大气色散方程中加入分形导数改善了对近场区域湍流输运过程的描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
pure and applied geophysics
pure and applied geophysics 地学-地球化学与地球物理
CiteScore
4.20
自引率
5.00%
发文量
240
审稿时长
9.8 months
期刊介绍: pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys. Long running journal, founded in 1939 as Geofisica pura e applicata Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research Coverage extends to research topics in oceanic sciences See Instructions for Authors on the right hand side.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信