{"title":"Phase field approach for managing multi-fragment interactions in load-bearing fractured media","authors":"A. Chao Correas, D. Acquesta, M. Corrado","doi":"10.1007/s10704-025-00843-5","DOIUrl":null,"url":null,"abstract":"<div><p>This work introduces a novel approach for characterizing the residual load bearing capacity of fractured components based on the Phase Field fracture model. The underlying idea involves exploiting this well-established framework for fracturing materials and applying it to mechanically loaded domains in which fracture has already occurred. Hence, the continuous phase field here portrays the smeared representation of known crack patterns, based on which the unilateral contact interactions between the crack lips are enforced through a suitable strain energy decomposition. This allows for a theoretically robust and implicit treatment of the originally discontinuous problem while remaining in a continuum framework. As such, the proposed approach avoids the numerically challenging definition and management of conventional contact pairs, thus proving to be especially promising for its application to domains with multiple fragments. Besides presenting the theoretical foundation and algorithmic convenience of the approach, its accuracy and representativeness are proven against theoretical predictions and numerical results from Finite Element models featuring conventional contact interactions.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"249 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-025-00843-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-025-00843-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces a novel approach for characterizing the residual load bearing capacity of fractured components based on the Phase Field fracture model. The underlying idea involves exploiting this well-established framework for fracturing materials and applying it to mechanically loaded domains in which fracture has already occurred. Hence, the continuous phase field here portrays the smeared representation of known crack patterns, based on which the unilateral contact interactions between the crack lips are enforced through a suitable strain energy decomposition. This allows for a theoretically robust and implicit treatment of the originally discontinuous problem while remaining in a continuum framework. As such, the proposed approach avoids the numerically challenging definition and management of conventional contact pairs, thus proving to be especially promising for its application to domains with multiple fragments. Besides presenting the theoretical foundation and algorithmic convenience of the approach, its accuracy and representativeness are proven against theoretical predictions and numerical results from Finite Element models featuring conventional contact interactions.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.