Review of Hydrogen Production Using Organic Waste Materials: Role of Industry 4.0 in Waste Valuation

IF 2.9 4区 工程技术 Q2 CHEMISTRY, MULTIDISCIPLINARY
Anshi Mehra, Neeraj Raja Ram, Nirmal Kumar Srivastava, G. N. Nikhil
{"title":"Review of Hydrogen Production Using Organic Waste Materials: Role of Industry 4.0 in Waste Valuation","authors":"Anshi Mehra,&nbsp;Neeraj Raja Ram,&nbsp;Nirmal Kumar Srivastava,&nbsp;G. N. Nikhil","doi":"10.1007/s11814-024-00367-z","DOIUrl":null,"url":null,"abstract":"<div><p>Attempts are made to utilise waste organic biomass to produce fuels, chemicals, energy, power, and by-products for many mercantile applications. Hydrogen is a demanding fuel with the highest calorific value, and conventional chemical processes have raised specific environmental concerns. Alternatively, such biodegradable organic waste can be managed better with fermentation technologies and also for producing hydrogen, which is more environmentally friendly and cost-effective. Given environmental concerns, retrofitting the current chemical industry 3.0 with sustainable product management is vital. This review communication provides crucial information about the chemical industry’s restructuring within the scope of using the circular economy principle in circular chemistry in the burgeoning industry 4.0 scenario. It also focuses on recovering energy from waste materials, a potential strategy for mitigating environmental effects. More case studies utilising organic waste as feedstock in bio-refinery processes will be of interest in future to attain environmental sustainability, which is also highlighted in parallel.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"42 3","pages":"455 - 481"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00367-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Attempts are made to utilise waste organic biomass to produce fuels, chemicals, energy, power, and by-products for many mercantile applications. Hydrogen is a demanding fuel with the highest calorific value, and conventional chemical processes have raised specific environmental concerns. Alternatively, such biodegradable organic waste can be managed better with fermentation technologies and also for producing hydrogen, which is more environmentally friendly and cost-effective. Given environmental concerns, retrofitting the current chemical industry 3.0 with sustainable product management is vital. This review communication provides crucial information about the chemical industry’s restructuring within the scope of using the circular economy principle in circular chemistry in the burgeoning industry 4.0 scenario. It also focuses on recovering energy from waste materials, a potential strategy for mitigating environmental effects. More case studies utilising organic waste as feedstock in bio-refinery processes will be of interest in future to attain environmental sustainability, which is also highlighted in parallel.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Korean Journal of Chemical Engineering
Korean Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
4.60
自引率
11.10%
发文量
310
审稿时长
4.7 months
期刊介绍: The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信