Anshi Mehra, Neeraj Raja Ram, Nirmal Kumar Srivastava, G. N. Nikhil
{"title":"Review of Hydrogen Production Using Organic Waste Materials: Role of Industry 4.0 in Waste Valuation","authors":"Anshi Mehra, Neeraj Raja Ram, Nirmal Kumar Srivastava, G. N. Nikhil","doi":"10.1007/s11814-024-00367-z","DOIUrl":null,"url":null,"abstract":"<div><p>Attempts are made to utilise waste organic biomass to produce fuels, chemicals, energy, power, and by-products for many mercantile applications. Hydrogen is a demanding fuel with the highest calorific value, and conventional chemical processes have raised specific environmental concerns. Alternatively, such biodegradable organic waste can be managed better with fermentation technologies and also for producing hydrogen, which is more environmentally friendly and cost-effective. Given environmental concerns, retrofitting the current chemical industry 3.0 with sustainable product management is vital. This review communication provides crucial information about the chemical industry’s restructuring within the scope of using the circular economy principle in circular chemistry in the burgeoning industry 4.0 scenario. It also focuses on recovering energy from waste materials, a potential strategy for mitigating environmental effects. More case studies utilising organic waste as feedstock in bio-refinery processes will be of interest in future to attain environmental sustainability, which is also highlighted in parallel.</p></div>","PeriodicalId":684,"journal":{"name":"Korean Journal of Chemical Engineering","volume":"42 3","pages":"455 - 481"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11814-024-00367-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Attempts are made to utilise waste organic biomass to produce fuels, chemicals, energy, power, and by-products for many mercantile applications. Hydrogen is a demanding fuel with the highest calorific value, and conventional chemical processes have raised specific environmental concerns. Alternatively, such biodegradable organic waste can be managed better with fermentation technologies and also for producing hydrogen, which is more environmentally friendly and cost-effective. Given environmental concerns, retrofitting the current chemical industry 3.0 with sustainable product management is vital. This review communication provides crucial information about the chemical industry’s restructuring within the scope of using the circular economy principle in circular chemistry in the burgeoning industry 4.0 scenario. It also focuses on recovering energy from waste materials, a potential strategy for mitigating environmental effects. More case studies utilising organic waste as feedstock in bio-refinery processes will be of interest in future to attain environmental sustainability, which is also highlighted in parallel.
期刊介绍:
The Korean Journal of Chemical Engineering provides a global forum for the dissemination of research in chemical engineering. The Journal publishes significant research results obtained in the Asia-Pacific region, and simultaneously introduces recent technical progress made in other areas of the world to this region. Submitted research papers must be of potential industrial significance and specifically concerned with chemical engineering. The editors will give preference to papers having a clearly stated practical scope and applicability in the areas of chemical engineering, and to those where new theoretical concepts are supported by new experimental details. The Journal also regularly publishes featured reviews on emerging and industrially important subjects of chemical engineering as well as selected papers presented at international conferences on the subjects.