Steric hindrance of organotin compounds in controlling the batch-to-batch variance of photovoltaic polymer donors†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yongrui He, Yuchen Yue, Jingfa Zhang, Ying Huang, Xucong Zhou, Han Shen, Kuan Li, Jie Shen, Landi Zeng, Jingjing Liu, Jingxia Wang, Bin Wang, Lei Jiang, Lijun Huo and Bing Zheng
{"title":"Steric hindrance of organotin compounds in controlling the batch-to-batch variance of photovoltaic polymer donors†","authors":"Yongrui He, Yuchen Yue, Jingfa Zhang, Ying Huang, Xucong Zhou, Han Shen, Kuan Li, Jie Shen, Landi Zeng, Jingjing Liu, Jingxia Wang, Bin Wang, Lei Jiang, Lijun Huo and Bing Zheng","doi":"10.1039/D5QM00005J","DOIUrl":null,"url":null,"abstract":"<p >Owing to its advantages of mild reaction conditions and a single reaction system, Stille coupling has become the main method of developing high-performance photovoltaic polymers. However, Stille coupling polycondensation, following a step-growth polymerization mechanism, still presents challenges in controlling the molecular weights of the polymers, leading to significant batch-to-batch variance. Herein, a strategy based on steric effects was applied to reduce molecular weight fluctuations using the large steric groups of organotin compounds to increase the difficulty of forming the transmetalation transition state. Consequently, we conducted competition experiments with small molecules and synthesized three polymers (<strong>PDF-1</strong>, <strong>PDF-2</strong>, and <strong>PDF-3</strong>) using BDF-based organotin compounds with varying steric hindrance. Theoretical calculations proved that the steric hindrance of organotin compounds significantly influenced the transition state in the transmetalation process. Device measurements revealed that the larger steric hindrance of organostannides could produce polymers with concentrated molecular weights, resulting in only a slight change in the PCEs. Although excessive steric hindrance could affect the photovoltaic properties, leading to lower PCEs, appropriate steric control of organostannides could yield polymer donors with high performance and low batch-to-batch variance. Therefore, this work provides guidelines for developing polymers with minimal batch-to-batch variance.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 5","pages":" 847-855"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/qm/d5qm00005j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to its advantages of mild reaction conditions and a single reaction system, Stille coupling has become the main method of developing high-performance photovoltaic polymers. However, Stille coupling polycondensation, following a step-growth polymerization mechanism, still presents challenges in controlling the molecular weights of the polymers, leading to significant batch-to-batch variance. Herein, a strategy based on steric effects was applied to reduce molecular weight fluctuations using the large steric groups of organotin compounds to increase the difficulty of forming the transmetalation transition state. Consequently, we conducted competition experiments with small molecules and synthesized three polymers (PDF-1, PDF-2, and PDF-3) using BDF-based organotin compounds with varying steric hindrance. Theoretical calculations proved that the steric hindrance of organotin compounds significantly influenced the transition state in the transmetalation process. Device measurements revealed that the larger steric hindrance of organostannides could produce polymers with concentrated molecular weights, resulting in only a slight change in the PCEs. Although excessive steric hindrance could affect the photovoltaic properties, leading to lower PCEs, appropriate steric control of organostannides could yield polymer donors with high performance and low batch-to-batch variance. Therefore, this work provides guidelines for developing polymers with minimal batch-to-batch variance.

Abstract Image

斯蒂尔偶联法具有反应条件温和、反应体系单一等优点,已成为开发高性能光伏聚合物的主要方法。然而,采用阶跃生长聚合机制的 Stille 偶联缩聚法在控制聚合物分子量方面仍面临挑战,导致批次间差异显著。在此,我们采用了一种基于立体效应的策略,利用有机锡化合物的大立体基团来增加形成跨金属过渡态的难度,从而减少分子量波动。因此,我们进行了小分子竞争实验,并利用不同立体阻碍的 BDF 型有机锡化合物合成了三种聚合物(PDF-1、PDF-2 和 PDF-3)。理论计算证明,有机锡化合物的立体阻碍对跨金属化过程中的过渡态有显著影响。装置测量结果表明,有机锡化合物的立体阻碍越大,生成的聚合物分子量越大,而 PCE 仅有轻微变化。虽然过大的立体阻碍会影响光伏特性,导致较低的 PCE,但对有机锡化物进行适当的立体控制可以生产出性能高、批次间差异小的聚合物供体。因此,这项工作为开发批间差异最小的聚合物提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信