Maarten De Boeck , Jozefien D'haeseleer , Morgan Rodgers
{"title":"Regular ovoids and Cameron-Liebler sets of generators in polar spaces","authors":"Maarten De Boeck , Jozefien D'haeseleer , Morgan Rodgers","doi":"10.1016/j.jcta.2025.106029","DOIUrl":null,"url":null,"abstract":"<div><div>Cameron-Liebler sets of generators in polar spaces were introduced a few years ago as natural generalisations of the Cameron-Liebler sets of subspaces in projective spaces. In this article we present the first two constructions of non-trivial Cameron-Liebler sets of generators in polar spaces. Also regular <em>m</em>-ovoids of <em>k</em>-spaces are introduced as a generalization of <em>m</em>-ovoids of polar spaces. They are used in one of the aforementioned constructions of Cameron-Liebler sets.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106029"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652500024X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Cameron-Liebler sets of generators in polar spaces were introduced a few years ago as natural generalisations of the Cameron-Liebler sets of subspaces in projective spaces. In this article we present the first two constructions of non-trivial Cameron-Liebler sets of generators in polar spaces. Also regular m-ovoids of k-spaces are introduced as a generalization of m-ovoids of polar spaces. They are used in one of the aforementioned constructions of Cameron-Liebler sets.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.