Regular ovoids and Cameron-Liebler sets of generators in polar spaces

IF 0.9 2区 数学 Q2 MATHEMATICS
Maarten De Boeck , Jozefien D'haeseleer , Morgan Rodgers
{"title":"Regular ovoids and Cameron-Liebler sets of generators in polar spaces","authors":"Maarten De Boeck ,&nbsp;Jozefien D'haeseleer ,&nbsp;Morgan Rodgers","doi":"10.1016/j.jcta.2025.106029","DOIUrl":null,"url":null,"abstract":"<div><div>Cameron-Liebler sets of generators in polar spaces were introduced a few years ago as natural generalisations of the Cameron-Liebler sets of subspaces in projective spaces. In this article we present the first two constructions of non-trivial Cameron-Liebler sets of generators in polar spaces. Also regular <em>m</em>-ovoids of <em>k</em>-spaces are introduced as a generalization of <em>m</em>-ovoids of polar spaces. They are used in one of the aforementioned constructions of Cameron-Liebler sets.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106029"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009731652500024X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cameron-Liebler sets of generators in polar spaces were introduced a few years ago as natural generalisations of the Cameron-Liebler sets of subspaces in projective spaces. In this article we present the first two constructions of non-trivial Cameron-Liebler sets of generators in polar spaces. Also regular m-ovoids of k-spaces are introduced as a generalization of m-ovoids of polar spaces. They are used in one of the aforementioned constructions of Cameron-Liebler sets.
极空间中的卡梅隆-利伯勒生成器集是几年前作为投影空间中子空间的卡梅隆-利伯勒集的自然广义而提出的。在这篇文章中,我们首次提出了极空间中非难卡梅隆-利伯勒生成器集的两个构造。此外,还介绍了 k 空间的正则 m-ovoids 作为极空间 m-ovoids 的广义。它们被用于上述卡梅隆-利伯勒集合的一个构造中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信