{"title":"Truncated forms of MacMahon's q-series","authors":"Mircea Merca","doi":"10.1016/j.jcta.2025.106020","DOIUrl":null,"url":null,"abstract":"<div><div>In 1920, Percy Alexander MacMahon defined the partition generating functions<span><span><span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span></span></span> and<span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo><</mo><mo>⋯</mo><mo><</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mi>k</mi></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span></span></span> which have since played an important role in combinatorial mathematics. For each non-negative integer <em>k</em>, George E. Andrews and Simon C. F. Rose proved that <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> can be expressed considering the generating function of partitions where each part can be colored in one of three different colors, while <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> can be expressed considering the generating function of overpartitions. Recently, for each non-negative integer <em>k</em>, Ken Ono and Ajit Singh proved that <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><mo>…</mo></math></span> give the generating function for the number of partitions of <em>n</em> where each part can be colored in one of three different colors, while <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><mo>…</mo></math></span> give the generating function for the number of overpartitions of <em>n</em>. In this paper, we provide the truncated versions of these results. Some open problems are introduced in this context.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106020"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000159","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In 1920, Percy Alexander MacMahon defined the partition generating functions and which have since played an important role in combinatorial mathematics. For each non-negative integer k, George E. Andrews and Simon C. F. Rose proved that can be expressed considering the generating function of partitions where each part can be colored in one of three different colors, while can be expressed considering the generating function of overpartitions. Recently, for each non-negative integer k, Ken Ono and Ajit Singh proved that , , give the generating function for the number of partitions of n where each part can be colored in one of three different colors, while , , give the generating function for the number of overpartitions of n. In this paper, we provide the truncated versions of these results. Some open problems are introduced in this context.
1920 年,珀西-亚历山大-麦克马洪定义了分区生成函数 Ak(q):=∑0<n1<n2<⋯<nkqn1+n2+⋯+nk(1-qn1)2(1-qn2)2⋯(1-qnk)2 和 Ck(q):=∑0<n1<n2<⋯<nkq2n1+2n2+⋯+2nk-k(1-q2n1-1)2(1-q2n2-1)2⋯(1-q2nk-1)2,它们在组合数学中发挥了重要作用。对于每一个非负整数 k,乔治-安德鲁斯(George E. Andrews)和西蒙-罗斯(Simon C. F. Rose)证明了 Ak(q)可以用分区的生成函数来表示,其中每一部分可以用三种不同颜色中的一种来着色,而 Ck(q)可以用过分区的生成函数来表示。最近,对于每个非负整数 k,Ken Ono 和 Ajit Singh 证明了 Ak(q)、Ak+1(q)、Ak+2(q)......给出了每个部分可以用三种不同颜色中的一种着色的 n 的分区数的生成函数,而 Ck(q)、Ck+1(q)、Ck+2(q)......给出了 n 的过度分区数的生成函数。本文还介绍了一些悬而未决的问题。
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.