Truncated forms of MacMahon's q-series

IF 0.9 2区 数学 Q2 MATHEMATICS
Mircea Merca
{"title":"Truncated forms of MacMahon's q-series","authors":"Mircea Merca","doi":"10.1016/j.jcta.2025.106020","DOIUrl":null,"url":null,"abstract":"<div><div>In 1920, Percy Alexander MacMahon defined the partition generating functions<span><span><span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mo>⋯</mo><mo>&lt;</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></mrow></math></span></span></span> and<span><span><span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mo>∑</mo><mrow><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&lt;</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&lt;</mo><mo>⋯</mo><mo>&lt;</mo><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></munder><mfrac><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mo>⋯</mo><mo>+</mo><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mi>k</mi></mrow></msup></mrow><mrow><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>⋯</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn><msub><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span></span></span> which have since played an important role in combinatorial mathematics. For each non-negative integer <em>k</em>, George E. Andrews and Simon C. F. Rose proved that <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> can be expressed considering the generating function of partitions where each part can be colored in one of three different colors, while <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> can be expressed considering the generating function of overpartitions. Recently, for each non-negative integer <em>k</em>, Ken Ono and Ajit Singh proved that <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><mo>…</mo></math></span> give the generating function for the number of partitions of <em>n</em> where each part can be colored in one of three different colors, while <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo><mo>,</mo><mo>…</mo></math></span> give the generating function for the number of overpartitions of <em>n</em>. In this paper, we provide the truncated versions of these results. Some open problems are introduced in this context.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"213 ","pages":"Article 106020"},"PeriodicalIF":0.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000159","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 1920, Percy Alexander MacMahon defined the partition generating functionsAk(q):=0<n1<n2<<nkqn1+n2++nk(1qn1)2(1qn2)2(1qnk)2 andCk(q):=0<n1<n2<<nkq2n1+2n2++2nkk(1q2n11)2(1q2n21)2(1q2nk1)2 which have since played an important role in combinatorial mathematics. For each non-negative integer k, George E. Andrews and Simon C. F. Rose proved that Ak(q) can be expressed considering the generating function of partitions where each part can be colored in one of three different colors, while Ck(q) can be expressed considering the generating function of overpartitions. Recently, for each non-negative integer k, Ken Ono and Ajit Singh proved that Ak(q), Ak+1(q), Ak+2(q), give the generating function for the number of partitions of n where each part can be colored in one of three different colors, while Ck(q), Ck+1(q), Ck+2(q), give the generating function for the number of overpartitions of n. In this paper, we provide the truncated versions of these results. Some open problems are introduced in this context.
1920 年,珀西-亚历山大-麦克马洪定义了分区生成函数 Ak(q):=∑0<n1<n2<⋯<nkqn1+n2+⋯+nk(1-qn1)2(1-qn2)2⋯(1-qnk)2 和 Ck(q):=∑0<n1<n2<⋯<nkq2n1+2n2+⋯+2nk-k(1-q2n1-1)2(1-q2n2-1)2⋯(1-q2nk-1)2,它们在组合数学中发挥了重要作用。对于每一个非负整数 k,乔治-安德鲁斯(George E. Andrews)和西蒙-罗斯(Simon C. F. Rose)证明了 Ak(q)可以用分区的生成函数来表示,其中每一部分可以用三种不同颜色中的一种来着色,而 Ck(q)可以用过分区的生成函数来表示。最近,对于每个非负整数 k,Ken Ono 和 Ajit Singh 证明了 Ak(q)、Ak+1(q)、Ak+2(q)......给出了每个部分可以用三种不同颜色中的一种着色的 n 的分区数的生成函数,而 Ck(q)、Ck+1(q)、Ck+2(q)......给出了 n 的过度分区数的生成函数。本文还介绍了一些悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信