Ternary composites based next-generation supercapacitors electrode material: Emerging trends

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY
Esha Ghazanfar , Hajira Zahoor , Nasser S. Awwad , Hala A. Ibrahium , Sadullah Mir , Ishtiaq Ahmed
{"title":"Ternary composites based next-generation supercapacitors electrode material: Emerging trends","authors":"Esha Ghazanfar ,&nbsp;Hajira Zahoor ,&nbsp;Nasser S. Awwad ,&nbsp;Hala A. Ibrahium ,&nbsp;Sadullah Mir ,&nbsp;Ishtiaq Ahmed","doi":"10.1016/j.elecom.2025.107893","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid advancements in energy storage and electronic applications have driven extensive research on conducting polymers, metal oxides, and carbonaceous materials due to their exceptional electrochemical and structural properties. Their unique physicochemical properties, such as high electrical conductivity, redox activity, and tunable surface chemistry, make them ideal candidates for supercapacitors, batteries, and sensors. Recent developments have focused on optimizing their synthesis, morphology, and hybridization to enhance conductivity, charge storage capacity, and long-term stability. Innovative strategies, including Nano structuring, doping, and surface engineering, have led to significant improvements in electrochemical performance. Furthermore, the integration of these materials into hybrid architecture has shown remarkable synergy, offering superior energy storage capabilities for supercapacitors and batteries. The CPs exhibit better conductivity and high theoretical capacitance but due to their cyclic instability, carbonaceous materials like graphene oxide are often reinforced with CPs. Still, the challenge of enhanced energy density cannot be addressed by binary composite and the need for ternary composite arises. Due to the outstanding specific capacitance of 100–2000 F/g with their redox activities the TMO are prominent electrode materials. This review highlights the importance of conducting polymers nanocomposites reinforced with graphene oxide and transition metal oxides in boosting electrical conductance, surface area, and charge storage ability of supercapacitors. Moreover, this review includes the latest literature and future opportunities in the emerging field of advanced electrode materials for supercapacitors. The review aims to offer valuable insights into the rational design of hybrid materials for next-generation energy storage technologies.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"174 ","pages":"Article 107893"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125000323","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancements in energy storage and electronic applications have driven extensive research on conducting polymers, metal oxides, and carbonaceous materials due to their exceptional electrochemical and structural properties. Their unique physicochemical properties, such as high electrical conductivity, redox activity, and tunable surface chemistry, make them ideal candidates for supercapacitors, batteries, and sensors. Recent developments have focused on optimizing their synthesis, morphology, and hybridization to enhance conductivity, charge storage capacity, and long-term stability. Innovative strategies, including Nano structuring, doping, and surface engineering, have led to significant improvements in electrochemical performance. Furthermore, the integration of these materials into hybrid architecture has shown remarkable synergy, offering superior energy storage capabilities for supercapacitors and batteries. The CPs exhibit better conductivity and high theoretical capacitance but due to their cyclic instability, carbonaceous materials like graphene oxide are often reinforced with CPs. Still, the challenge of enhanced energy density cannot be addressed by binary composite and the need for ternary composite arises. Due to the outstanding specific capacitance of 100–2000 F/g with their redox activities the TMO are prominent electrode materials. This review highlights the importance of conducting polymers nanocomposites reinforced with graphene oxide and transition metal oxides in boosting electrical conductance, surface area, and charge storage ability of supercapacitors. Moreover, this review includes the latest literature and future opportunities in the emerging field of advanced electrode materials for supercapacitors. The review aims to offer valuable insights into the rational design of hybrid materials for next-generation energy storage technologies.
基于三元复合材料的下一代超级电容器电极材料:新兴趋势
储能和电子应用的快速发展推动了对导电聚合物、金属氧化物和碳质材料的广泛研究,因为它们具有优异的电化学和结构特性。其独特的物理化学性质,如高导电性、氧化还原活性和可调的表面化学,使其成为超级电容器、电池和传感器的理想候选材料。最近的研究重点是优化它们的合成、形态和杂交,以提高电导率、电荷存储能力和长期稳定性。创新的策略,包括纳米结构、掺杂和表面工程,导致了电化学性能的显著提高。此外,将这些材料集成到混合结构中显示出显著的协同作用,为超级电容器和电池提供卓越的能量存储能力。CPs具有更好的导电性和较高的理论电容,但由于其循环不稳定性,像氧化石墨烯这样的碳质材料通常用CPs来增强。然而,增强能量密度的挑战无法通过二元复合材料来解决,因此需要三元复合材料。由于TMO具有100 - 2000f /g的优异比电容和氧化还原活性,是极好的电极材料。本文综述了氧化石墨烯和过渡金属氧化物增强的导电聚合物纳米复合材料在提高超级电容器的电导率、表面积和电荷存储能力方面的重要性。此外,本文还综述了超级电容器先进电极材料这一新兴领域的最新文献和未来机遇。该综述旨在为下一代储能技术的混合材料的合理设计提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信