Research on material removal behavior and influence mechanism of electrochemical electric arc machining

IF 6.4 2区 工程技术 Q1 MECHANICS
Jianping Zhou , Shengsheng Zhang , Yinan Zhao , Zongjie Zhou , Guoyu Hu , Lizhong Wang , Yan Xu
{"title":"Research on material removal behavior and influence mechanism of electrochemical electric arc machining","authors":"Jianping Zhou ,&nbsp;Shengsheng Zhang ,&nbsp;Yinan Zhao ,&nbsp;Zongjie Zhou ,&nbsp;Guoyu Hu ,&nbsp;Lizhong Wang ,&nbsp;Yan Xu","doi":"10.1016/j.icheatmasstransfer.2025.108786","DOIUrl":null,"url":null,"abstract":"<div><div>A research method combining plasma-electrochemical corrosion multi-field coupled simulation and discharge/dissolution experiments was used to reveal the material removal mechanism of electrochemical electric arc machining (ECEAM). A jet-based plasma-electrochemical corrosion multi-field coupling model was established to describe the arc-breaking, heat-transfer, and dissolution processes under the jet electrolyte, as well as the material removal behavior of dissolution/discharge alternation. A single discharge/dissolution experiment with a constant feed rate was designed to verify the reliability of the simulation results and explain the influence mechanism and sensitivity factors of the discharge/dissolution action ratio. Continuous discharge/dissolution experiment was carried out to construct the linkage between the single discharge/dissolution of material and the material surface removal process in order to comprehensively elaborate the material removal mechanism of ECEAM.</div></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":"163 ","pages":"Article 108786"},"PeriodicalIF":6.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193325002118","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

A research method combining plasma-electrochemical corrosion multi-field coupled simulation and discharge/dissolution experiments was used to reveal the material removal mechanism of electrochemical electric arc machining (ECEAM). A jet-based plasma-electrochemical corrosion multi-field coupling model was established to describe the arc-breaking, heat-transfer, and dissolution processes under the jet electrolyte, as well as the material removal behavior of dissolution/discharge alternation. A single discharge/dissolution experiment with a constant feed rate was designed to verify the reliability of the simulation results and explain the influence mechanism and sensitivity factors of the discharge/dissolution action ratio. Continuous discharge/dissolution experiment was carried out to construct the linkage between the single discharge/dissolution of material and the material surface removal process in order to comprehensively elaborate the material removal mechanism of ECEAM.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信