{"title":"Advanced terrain-adaptive tropical cyclone wind field modeling using deep learning for infrastructure resilience planning","authors":"Yilin Shi , Naiyu Wang , Bruce R. Ellingwood","doi":"10.1016/j.strusafe.2025.102580","DOIUrl":null,"url":null,"abstract":"<div><div>Tropical cyclones pose significant threats to the resilience of coastal communities, underscoring the need for reliable wind field models to support robust hazard analyses. Parametric wind models (PWMs), despite their computational efficiency, often fall short in capturing intricate wind-terrain interactions, leading to inaccurate resilience evaluations for spatially-distributed civil infrastructure systems situated in complex terrains. This study introduces an innovative approach that integrates the strengths of numerical wind models to handle intricate terrain features into PWMs through a deep learning-based Convolutional Neural Network for Terrain Modification (CNN-TM). The CNN-TM model, trained over 3 million km<sup>2</sup> of numerically simulated high-resolution wind fields, enhances terrain representation in PWMs by generating 450 m-resolution terrain-modified wind fields for both wind speed and direction. The accuracy and efficiency of this integration are validated across multiple scales: grid (∼0.2 km<sup>2</sup>), patch (∼506 km<sup>2</sup>), and region (∼34,000 km<sup>2</sup>). Applications during Typhoon Hagupit (2020) in Zhejiang Province, China, demonstrate its practical effectiveness across a 105,000 km<sup>2</sup> area. By leveraging deep learning to synergize numerical and parametric models, the CNN-TM model addresses limitations of traditional PWMs and provides a robust tool for resilience-oriented decision-making for infrastructure systems in coastal regions characterized by complex terrains.</div></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"114 ","pages":"Article 102580"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473025000086","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Tropical cyclones pose significant threats to the resilience of coastal communities, underscoring the need for reliable wind field models to support robust hazard analyses. Parametric wind models (PWMs), despite their computational efficiency, often fall short in capturing intricate wind-terrain interactions, leading to inaccurate resilience evaluations for spatially-distributed civil infrastructure systems situated in complex terrains. This study introduces an innovative approach that integrates the strengths of numerical wind models to handle intricate terrain features into PWMs through a deep learning-based Convolutional Neural Network for Terrain Modification (CNN-TM). The CNN-TM model, trained over 3 million km2 of numerically simulated high-resolution wind fields, enhances terrain representation in PWMs by generating 450 m-resolution terrain-modified wind fields for both wind speed and direction. The accuracy and efficiency of this integration are validated across multiple scales: grid (∼0.2 km2), patch (∼506 km2), and region (∼34,000 km2). Applications during Typhoon Hagupit (2020) in Zhejiang Province, China, demonstrate its practical effectiveness across a 105,000 km2 area. By leveraging deep learning to synergize numerical and parametric models, the CNN-TM model addresses limitations of traditional PWMs and provides a robust tool for resilience-oriented decision-making for infrastructure systems in coastal regions characterized by complex terrains.
期刊介绍:
Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment