{"title":"Scaling effect of impact response for CFST components","authors":"Liu Jin, Qian Fu, Renbo Zhang, Jian Li, Xiuli Du","doi":"10.1016/j.ijmecsci.2025.110051","DOIUrl":null,"url":null,"abstract":"<div><div>The plastic deformation and the strain rate effect caused by the dynamic impact load may cause the classical similarity law to no longer apply to the mutual derivation of the impact resistance between the geometrically similar concrete-filled steel tube (CFST) components. In this study, four CFST components with similar geometric sizes were designed. The effect of component size on the impact response indexes, such as impact displacement, impact force, and energy absorption of geometrically similar CFST components, was studied. It is concluded that the above impact response indexes of geometrically similar CFST components do not fully conform to the classical similarity law; that is, they have a scaling effect. The scaling effect of impact displacement is mainly due to the severe plastic deflection deformation in the mid-span impacted area of large-size CFST components. The scaling effect of impact force is primarily due to the slight normalized contact stiffness in the mid-span impacted area and the severe global stiffness degradation of the large-size CFST components. The scaling effects of the relevant impact response indexes studied in this paper are related to severe plastic deformation and minor contact stiffness of large-size components, and their scaling effect is more significant with the increasing scale factor, which is consistent with those for steel tube and reinforced concrete components. In addition, based on the simulation results and drawing on the classical similarity law expression, the scaling effect model of displacement and impact force for geometrically similar CFST components is preliminarily established, which can predict the calculated scale factor of impact response for CFST components.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"289 ","pages":"Article 110051"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325001377","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The plastic deformation and the strain rate effect caused by the dynamic impact load may cause the classical similarity law to no longer apply to the mutual derivation of the impact resistance between the geometrically similar concrete-filled steel tube (CFST) components. In this study, four CFST components with similar geometric sizes were designed. The effect of component size on the impact response indexes, such as impact displacement, impact force, and energy absorption of geometrically similar CFST components, was studied. It is concluded that the above impact response indexes of geometrically similar CFST components do not fully conform to the classical similarity law; that is, they have a scaling effect. The scaling effect of impact displacement is mainly due to the severe plastic deflection deformation in the mid-span impacted area of large-size CFST components. The scaling effect of impact force is primarily due to the slight normalized contact stiffness in the mid-span impacted area and the severe global stiffness degradation of the large-size CFST components. The scaling effects of the relevant impact response indexes studied in this paper are related to severe plastic deformation and minor contact stiffness of large-size components, and their scaling effect is more significant with the increasing scale factor, which is consistent with those for steel tube and reinforced concrete components. In addition, based on the simulation results and drawing on the classical similarity law expression, the scaling effect model of displacement and impact force for geometrically similar CFST components is preliminarily established, which can predict the calculated scale factor of impact response for CFST components.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.