Mohammad Ali Raayatpanah , Atefeh Abdolah Abyaneh , Jocelyne Elias , Fabio Martignon
{"title":"Two-stage robust wireless body area network design","authors":"Mohammad Ali Raayatpanah , Atefeh Abdolah Abyaneh , Jocelyne Elias , Fabio Martignon","doi":"10.1016/j.iot.2025.101540","DOIUrl":null,"url":null,"abstract":"<div><div>The Internet of Things (IoT) has reshaped technology paradigms through the integration of intelligent components like sensors, paving the way to the development of Wireless Body Area Networks (WBANs) specifically tailored for healthcare applications. However, designing an efficient WBAN requires addressing several challenges, including energy-efficient routing and data rate uncertainty. In response to these challenges, this paper proposes a novel approach — a two-stage robust programming formulation — for WBAN design. The primary aim is to minimize both energy consumption and relay placement costs, all while accounting for the inherent uncertainty in data rates. The proposed formulation explicitly addresses data rate uncertainties, leveraging robust optimization techniques to handle this uncertainty. We prove that efficiently solving an approximation of this robust formulation is achievable. Numerical results, measured in a set of realistic WBAN scenarios, demonstrate the effectiveness of the introduced two-stage robust programming formulation in achieving notable reductions in energy consumption and relay placement costs within the context of WBANs.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"31 ","pages":"Article 101540"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525000538","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The Internet of Things (IoT) has reshaped technology paradigms through the integration of intelligent components like sensors, paving the way to the development of Wireless Body Area Networks (WBANs) specifically tailored for healthcare applications. However, designing an efficient WBAN requires addressing several challenges, including energy-efficient routing and data rate uncertainty. In response to these challenges, this paper proposes a novel approach — a two-stage robust programming formulation — for WBAN design. The primary aim is to minimize both energy consumption and relay placement costs, all while accounting for the inherent uncertainty in data rates. The proposed formulation explicitly addresses data rate uncertainties, leveraging robust optimization techniques to handle this uncertainty. We prove that efficiently solving an approximation of this robust formulation is achievable. Numerical results, measured in a set of realistic WBAN scenarios, demonstrate the effectiveness of the introduced two-stage robust programming formulation in achieving notable reductions in energy consumption and relay placement costs within the context of WBANs.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.