{"title":"Tunable NIR nano-absorber based on photothermal response and thermoplasmonic modulation of Au@GSST core-shell nanoparticle","authors":"Ahmad Khanehzar, Naser Zamani, Ali Hatef","doi":"10.1016/j.photonics.2025.101369","DOIUrl":null,"url":null,"abstract":"<div><div>Phase change materials (PCMs) are attractive candidates for tunable devices due to their unique properties, such as high degree of scalability, thermal control, low power consumption, wide waveband operation, and the ability to switch between different optical phases. These properties can be enhanced by integrating PCMs with other materials, such as plasmonic nanoparticles. In this work, a core-shell nanostructure (Au@GSST) is proposed comprising a gold nanoparticle (AuNP) core coated with Ge<sub>2</sub>Sb<sub>2</sub>Se<sub>4</sub>Te<sub>1</sub> (GSST), a PCM with high optical contrast, embedded in an aqueous medium. We demonstrate how the phase transition of GSST can be actively controlled by the light energy absorption of the Au@GSST. The integration of the Au core facilitates the phase change process of GSST due to its plasmonic effect, which leads to lower heat capacity and higher heat conductivity of the AuNP. These characteristics accelerate the GSST phase change process at a lower continuous wave (CW) laser intensity compared to a bare GSST nanoparticle. An induced photothermal process that includes heat transfer, the crystalline fraction, and the electric field enhancement of the Au@GSST, as functions of the laser wavelength and intensity is investigated. Our results show that through this process, the GSST shell can be tuned between fully amorphous, intermediate, and fully crystalline states. This phase transition leads to a substantial modification of the optical responses of the Au@GSST. The absorption, scattering and extinction cross-sections of the structure over a wide range of wavelengths before and after the GSST phase transition is studied. We focus on two specific wavelengths, 778 nm and 919 nm, which exhibit higher light absorption contrast in both the amorphous and crystalline phases of GSST. Such active tunning of Au@GSST without morphological variation can be utilized in reconfigurable nanophotonic devices, such as switches, modulators, and sensors.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"64 ","pages":"Article 101369"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441025000197","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Phase change materials (PCMs) are attractive candidates for tunable devices due to their unique properties, such as high degree of scalability, thermal control, low power consumption, wide waveband operation, and the ability to switch between different optical phases. These properties can be enhanced by integrating PCMs with other materials, such as plasmonic nanoparticles. In this work, a core-shell nanostructure (Au@GSST) is proposed comprising a gold nanoparticle (AuNP) core coated with Ge2Sb2Se4Te1 (GSST), a PCM with high optical contrast, embedded in an aqueous medium. We demonstrate how the phase transition of GSST can be actively controlled by the light energy absorption of the Au@GSST. The integration of the Au core facilitates the phase change process of GSST due to its plasmonic effect, which leads to lower heat capacity and higher heat conductivity of the AuNP. These characteristics accelerate the GSST phase change process at a lower continuous wave (CW) laser intensity compared to a bare GSST nanoparticle. An induced photothermal process that includes heat transfer, the crystalline fraction, and the electric field enhancement of the Au@GSST, as functions of the laser wavelength and intensity is investigated. Our results show that through this process, the GSST shell can be tuned between fully amorphous, intermediate, and fully crystalline states. This phase transition leads to a substantial modification of the optical responses of the Au@GSST. The absorption, scattering and extinction cross-sections of the structure over a wide range of wavelengths before and after the GSST phase transition is studied. We focus on two specific wavelengths, 778 nm and 919 nm, which exhibit higher light absorption contrast in both the amorphous and crystalline phases of GSST. Such active tunning of Au@GSST without morphological variation can be utilized in reconfigurable nanophotonic devices, such as switches, modulators, and sensors.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.