DOT1L in neural development and neurological and psychotic disorders

IF 4.4 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Feiyan Shen , Linghui Zeng , Yanpan Gao
{"title":"DOT1L in neural development and neurological and psychotic disorders","authors":"Feiyan Shen ,&nbsp;Linghui Zeng ,&nbsp;Yanpan Gao","doi":"10.1016/j.neuint.2025.105955","DOIUrl":null,"url":null,"abstract":"<div><div>Disruptor of Telomeric Silencing 1-Like (DOT1L) is the sole methyltransferase in mammals responsible for catalyzing the mono-, di-, and trimethylation of histone H3 at lysine 79 (H3K79), a modification crucial for various cellular processes, including gene transcription, cell cycle regulation, DNA repair, and development. Recent studies have increasingly linked DOT1L to the nervous system, where it plays a vital role in neurodevelopment and neuronal function. It has been shown to regulate the proliferation and differentiation of neural progenitor cells, promote neuronal maturation, and influence synaptic function, all of which are essential for proper neural circuit formation and brain function. Moreover, dysregulation of DOT1L has been associated with several neurological disorders, highlighting its potential role in disease pathology. Abnormal expression or activity of DOT1L has been implicated in cognitive deficits and neurodegenerative diseases, underscoring the enzyme's significance in both the development and maintenance of the nervous system. This review synthesizes recent findings on DOT1L's role in the nervous system, emphasizing its importance in neurodevelopment and exploring its potential as a therapeutic target for treating neurological disorders.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"185 ","pages":"Article 105955"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018625000282","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Disruptor of Telomeric Silencing 1-Like (DOT1L) is the sole methyltransferase in mammals responsible for catalyzing the mono-, di-, and trimethylation of histone H3 at lysine 79 (H3K79), a modification crucial for various cellular processes, including gene transcription, cell cycle regulation, DNA repair, and development. Recent studies have increasingly linked DOT1L to the nervous system, where it plays a vital role in neurodevelopment and neuronal function. It has been shown to regulate the proliferation and differentiation of neural progenitor cells, promote neuronal maturation, and influence synaptic function, all of which are essential for proper neural circuit formation and brain function. Moreover, dysregulation of DOT1L has been associated with several neurological disorders, highlighting its potential role in disease pathology. Abnormal expression or activity of DOT1L has been implicated in cognitive deficits and neurodegenerative diseases, underscoring the enzyme's significance in both the development and maintenance of the nervous system. This review synthesizes recent findings on DOT1L's role in the nervous system, emphasizing its importance in neurodevelopment and exploring its potential as a therapeutic target for treating neurological disorders.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurochemistry international
Neurochemistry international 医学-神经科学
CiteScore
8.40
自引率
2.40%
发文量
128
审稿时长
37 days
期刊介绍: Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信