Towards improved harmful algal bloom forecasts: A comparison of symbolic regression with DoME and stream learning performance

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Andres Molares-Ulloa , Elisabet Rocruz , Daniel Rivero , Xosé A. Padin , Rita Nolasco , Jesús Dubert , Enrique Fernandez-Blanco
{"title":"Towards improved harmful algal bloom forecasts: A comparison of symbolic regression with DoME and stream learning performance","authors":"Andres Molares-Ulloa ,&nbsp;Elisabet Rocruz ,&nbsp;Daniel Rivero ,&nbsp;Xosé A. Padin ,&nbsp;Rita Nolasco ,&nbsp;Jesús Dubert ,&nbsp;Enrique Fernandez-Blanco","doi":"10.1016/j.compag.2025.110112","DOIUrl":null,"url":null,"abstract":"<div><div>Diarrhetic Shellfish Poisoning (DSP) is a global health issue caused by shellfish contaminated with toxins from dinoflagellates, posing significant risks to public health and the shellfish industry. Harmful Algal Blooms (HABs), driven by toxin-producing algae like DSP, require effective monitoring and forecasting systems. Predicting HABs is challenging due to the time-series nature of the problem, influenced by historical seasonal patterns and recent anomalies from meteorological and oceanographic changes. Stream Learning shows promise for handling time-series problems with concept drifts but has yet to be validated for HAB prediction compared to Batch Learning. Limited historical data availability in oceanography highlights the importance of advanced tools like the CROCO ocean hydrodynamic model, which provides high-resolution temporal and spatial data. This study developed a machine learning workflow to predict toxic dinoflagellate (<em>Dinophysis acuminata</em>) cell counts, comparing seven algorithms across two learning paradigms. The CROCO model data addressed historical data gaps. The DoME model, with an average <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.77 for 3-day-ahead predictions, proved the most effective and interpretable, underscoring the value of model explainability and rigorous comparison methodologies.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"233 ","pages":"Article 110112"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925002182","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diarrhetic Shellfish Poisoning (DSP) is a global health issue caused by shellfish contaminated with toxins from dinoflagellates, posing significant risks to public health and the shellfish industry. Harmful Algal Blooms (HABs), driven by toxin-producing algae like DSP, require effective monitoring and forecasting systems. Predicting HABs is challenging due to the time-series nature of the problem, influenced by historical seasonal patterns and recent anomalies from meteorological and oceanographic changes. Stream Learning shows promise for handling time-series problems with concept drifts but has yet to be validated for HAB prediction compared to Batch Learning. Limited historical data availability in oceanography highlights the importance of advanced tools like the CROCO ocean hydrodynamic model, which provides high-resolution temporal and spatial data. This study developed a machine learning workflow to predict toxic dinoflagellate (Dinophysis acuminata) cell counts, comparing seven algorithms across two learning paradigms. The CROCO model data addressed historical data gaps. The DoME model, with an average R2 of 0.77 for 3-day-ahead predictions, proved the most effective and interpretable, underscoring the value of model explainability and rigorous comparison methodologies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信