Yuxiang Gao , Jinmao Hua , Sohrab Rohani , Wen Cao , Guoquan Zhang , Zhen Yang , Zhifeng Qin , Qingcai Liu , Weizao Liu
{"title":"An efficient approach for simultaneous CO2 mineralization and nickel separation from laterite leachate","authors":"Yuxiang Gao , Jinmao Hua , Sohrab Rohani , Wen Cao , Guoquan Zhang , Zhen Yang , Zhifeng Qin , Qingcai Liu , Weizao Liu","doi":"10.1016/j.desal.2025.118738","DOIUrl":null,"url":null,"abstract":"<div><div>Currently, nickel production is mainly based on a high−carbon−footprint refining process. An alternative low−carbon nickel recovery method is vital for sustainable development. This study presented a technique for nickel separation and CO<sub>2</sub> mineral sequestration from a nickel and magnesium−containing leachate. Eh − pH results showed that the conditions for forming nickel−ammonium complexes closely aligned with those for magnesium carbonate formation. Thus, magnesium was selectively separated by injecting CO<sub>2</sub> and ammonia. Under the conditions of Mg<sup>2+</sup> concentration of 0.8 mol/L, NH<sub>3</sub>/Mg molar ratio of 8, CO<sub>2</sub> flow rate of 200 ml/min, injection time of 60 min, and aging time of 60 min, magnesium precipitation ratio approached 100 %, with nickel loss below 1 %. Increased concentrations of [NH<sub>3</sub>] and [CO<sub>2</sub>] in the solution facilitated the separation of magnesium and nickel, while promoting the precipitation of magnesium ions as porous MgCO<sub>3</sub>·3H<sub>2</sub>O clusters. Nickel can be recovered as NiCO<sub>3</sub> from the Mg − depleted solution by evaporation. This paper integrated CO<sub>2</sub> mineralization with the recovery of valuable nickel into a single step, maximizing nickel selectivity and minimizing CO<sub>2</sub> emissions.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"604 ","pages":"Article 118738"},"PeriodicalIF":8.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916425002139","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, nickel production is mainly based on a high−carbon−footprint refining process. An alternative low−carbon nickel recovery method is vital for sustainable development. This study presented a technique for nickel separation and CO2 mineral sequestration from a nickel and magnesium−containing leachate. Eh − pH results showed that the conditions for forming nickel−ammonium complexes closely aligned with those for magnesium carbonate formation. Thus, magnesium was selectively separated by injecting CO2 and ammonia. Under the conditions of Mg2+ concentration of 0.8 mol/L, NH3/Mg molar ratio of 8, CO2 flow rate of 200 ml/min, injection time of 60 min, and aging time of 60 min, magnesium precipitation ratio approached 100 %, with nickel loss below 1 %. Increased concentrations of [NH3] and [CO2] in the solution facilitated the separation of magnesium and nickel, while promoting the precipitation of magnesium ions as porous MgCO3·3H2O clusters. Nickel can be recovered as NiCO3 from the Mg − depleted solution by evaporation. This paper integrated CO2 mineralization with the recovery of valuable nickel into a single step, maximizing nickel selectivity and minimizing CO2 emissions.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.