Muhammad Tayyab Bhutta , Sadaqat Ali , Malik Adeel Umer , Aamir Mubashar , Emad Ud Din , Adnan Munir , Abdul Basit
{"title":"Effect of process parameters and material composition of Al2O3-HAP composite using powder metallurgy","authors":"Muhammad Tayyab Bhutta , Sadaqat Ali , Malik Adeel Umer , Aamir Mubashar , Emad Ud Din , Adnan Munir , Abdul Basit","doi":"10.1016/j.rinma.2025.100669","DOIUrl":null,"url":null,"abstract":"<div><div>This work used vacuum sintering and powder metallurgy (PM) to manufacture alumina (Al2O3) and hydroxyapatite (HAP) composite. Alumina's bio-inertness prevented bone ingrowth since it is not osteoinductive. Alumina (Al<sub>2</sub>O<sub>3</sub>) and hydroxyapatite (HAP) composites with bioinertness and biocompatibility have been created in order to provide a new material for load-bearing biomedical applications with comparatively low lower modulus, appropriate strength, and high biocompatibility. Four composite compositions with alumina concentrations of 60, 70, 80, and 90 % and hydroxyapatite concentrations of 40, 30, 20, and 10 % of the total volume were created for accurate characterization. A ball mill was used to mix the powders, and a hydraulic press was used for cold compaction. The green pellets were vacuum sintered for two, three, and 4 h at temperatures of 1300 °C and 1350 °C. The created composite compositions were examined utilizing elemental analysis to quantify the components and microstructure, as well as OM, FESEM, and XRD methods. The study's findings indicate that adding more HAP reduces the mechanical characteristics of the composites while adding more Al2O3 increases them. Furthermore, it was determined that the composition containing 70 % alumina and 30 % HAP, sintered for 4 h at 1350 °C, was optimal for use in biomedical applications.</div></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"25 ","pages":"Article 100669"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590048X25000147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work used vacuum sintering and powder metallurgy (PM) to manufacture alumina (Al2O3) and hydroxyapatite (HAP) composite. Alumina's bio-inertness prevented bone ingrowth since it is not osteoinductive. Alumina (Al2O3) and hydroxyapatite (HAP) composites with bioinertness and biocompatibility have been created in order to provide a new material for load-bearing biomedical applications with comparatively low lower modulus, appropriate strength, and high biocompatibility. Four composite compositions with alumina concentrations of 60, 70, 80, and 90 % and hydroxyapatite concentrations of 40, 30, 20, and 10 % of the total volume were created for accurate characterization. A ball mill was used to mix the powders, and a hydraulic press was used for cold compaction. The green pellets were vacuum sintered for two, three, and 4 h at temperatures of 1300 °C and 1350 °C. The created composite compositions were examined utilizing elemental analysis to quantify the components and microstructure, as well as OM, FESEM, and XRD methods. The study's findings indicate that adding more HAP reduces the mechanical characteristics of the composites while adding more Al2O3 increases them. Furthermore, it was determined that the composition containing 70 % alumina and 30 % HAP, sintered for 4 h at 1350 °C, was optimal for use in biomedical applications.