Activating cryptic biosynthetic gene clusters via ACTIMOT

Xiaoying Bian
{"title":"Activating cryptic biosynthetic gene clusters via ACTIMOT","authors":"Xiaoying Bian","doi":"10.1016/j.engmic.2025.100190","DOIUrl":null,"url":null,"abstract":"<div><div>The mainstream strategy of genome mining relies on the homologous activation and heterologous expression of target biosynthetic gene clusters (BGCs). However, the efficiency of the current techniques available for new compound discovery hardly complements these efforts. In a recent publication in <em>Science</em>, Xie et al. reported their breakthrough progress in expediting the discovery of untapped chemical diversity from bacteria by establishing the leveraged know-how of ACTIMOT (Advanced Cas9-mediaTed In vivo MObilization and mulTiplication of BGCs), offering a new avenue to access the unexploited, and even unpredictable, biosynthetic potential of bacteria.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 1","pages":"Article 100190"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370325000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The mainstream strategy of genome mining relies on the homologous activation and heterologous expression of target biosynthetic gene clusters (BGCs). However, the efficiency of the current techniques available for new compound discovery hardly complements these efforts. In a recent publication in Science, Xie et al. reported their breakthrough progress in expediting the discovery of untapped chemical diversity from bacteria by establishing the leveraged know-how of ACTIMOT (Advanced Cas9-mediaTed In vivo MObilization and mulTiplication of BGCs), offering a new avenue to access the unexploited, and even unpredictable, biosynthetic potential of bacteria.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信