{"title":"Activating cryptic biosynthetic gene clusters via ACTIMOT","authors":"Xiaoying Bian","doi":"10.1016/j.engmic.2025.100190","DOIUrl":null,"url":null,"abstract":"<div><div>The mainstream strategy of genome mining relies on the homologous activation and heterologous expression of target biosynthetic gene clusters (BGCs). However, the efficiency of the current techniques available for new compound discovery hardly complements these efforts. In a recent publication in <em>Science</em>, Xie et al. reported their breakthrough progress in expediting the discovery of untapped chemical diversity from bacteria by establishing the leveraged know-how of ACTIMOT (Advanced Cas9-mediaTed In vivo MObilization and mulTiplication of BGCs), offering a new avenue to access the unexploited, and even unpredictable, biosynthetic potential of bacteria.</div></div>","PeriodicalId":100478,"journal":{"name":"Engineering Microbiology","volume":"5 1","pages":"Article 100190"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667370325000025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The mainstream strategy of genome mining relies on the homologous activation and heterologous expression of target biosynthetic gene clusters (BGCs). However, the efficiency of the current techniques available for new compound discovery hardly complements these efforts. In a recent publication in Science, Xie et al. reported their breakthrough progress in expediting the discovery of untapped chemical diversity from bacteria by establishing the leveraged know-how of ACTIMOT (Advanced Cas9-mediaTed In vivo MObilization and mulTiplication of BGCs), offering a new avenue to access the unexploited, and even unpredictable, biosynthetic potential of bacteria.