{"title":"Peristaltic nanofluid flow analysis inside wavy channels for pharmacological applications","authors":"S.E. Ghasemi , A.A. Ranjbar","doi":"10.1016/j.rechem.2025.102128","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a two-phase model to simulate and analyze the peristaltic flow of nanofluids through a wavy-shaped channel, with significant applications in drug delivery systems in pharmacology and blood pumps. The research aims to investigate the temperature field and nanoparticle volume fraction, providing insights into heat and mass transfer behaviors in biomedical and industrial applications. The Adams-Bashforth numerical method has been employed to obtain the model results, ensuring accuracy and reliability. A comparison with two published works demonstrates high precision and consistency in the findings. Key results indicate a direct correlation between the Brownian motion parameter (N<sub>b</sub>) and the temperature profile, where an increase in N<sub>b</sub> from 3 to 7 leads to a 27 % rise in temperature at η = 0.3. Additionally, an increase in N<sub>b</sub> enhances the nanofluid concentration, with a 15 % rise in nanoparticle fraction observed at η = 0.5. These findings contribute to optimizing nanofluid-based biomedical devices and improving thermal management in engineering applications.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"14 ","pages":"Article 102128"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625001110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a two-phase model to simulate and analyze the peristaltic flow of nanofluids through a wavy-shaped channel, with significant applications in drug delivery systems in pharmacology and blood pumps. The research aims to investigate the temperature field and nanoparticle volume fraction, providing insights into heat and mass transfer behaviors in biomedical and industrial applications. The Adams-Bashforth numerical method has been employed to obtain the model results, ensuring accuracy and reliability. A comparison with two published works demonstrates high precision and consistency in the findings. Key results indicate a direct correlation between the Brownian motion parameter (Nb) and the temperature profile, where an increase in Nb from 3 to 7 leads to a 27 % rise in temperature at η = 0.3. Additionally, an increase in Nb enhances the nanofluid concentration, with a 15 % rise in nanoparticle fraction observed at η = 0.5. These findings contribute to optimizing nanofluid-based biomedical devices and improving thermal management in engineering applications.