{"title":"Asymptotic efficiency of inferential models and a possibilistic Bernstein–von Mises theorem","authors":"Ryan Martin, Jonathan P. Williams","doi":"10.1016/j.ijar.2025.109389","DOIUrl":null,"url":null,"abstract":"<div><div>The inferential model (IM) framework offers an alternative to the classical probabilistic (e.g., Bayesian and fiducial) uncertainty quantification in statistical inference. A key distinction is that classical uncertainty quantification takes the form of precise probabilities and offers only limited large-sample validity guarantees, whereas the IM's uncertainty quantification is imprecise in such a way that exact, finite-sample valid inference is possible. But are the IM's imprecision and finite-sample validity compatible with statistical efficiency? That is, can IMs be both finite-sample valid and asymptotically efficient? This paper gives an affirmative answer to this question via a new possibilistic Bernstein–von Mises theorem that parallels a fundamental Bayesian result. Among other things, our result shows that the IM solution is efficient in the sense that, asymptotically, its credal set is the smallest that contains the Gaussian distribution with variance equal to the Cramér–Rao lower bound. Moreover, a corresponding version of this new Bernstein–von Mises theorem is presented for problems that involve the elimination of nuisance parameters, which settles an open question concerning the relative efficiency of profiling-based versus extension-based marginalization strategies.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"180 ","pages":"Article 109389"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25000301","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The inferential model (IM) framework offers an alternative to the classical probabilistic (e.g., Bayesian and fiducial) uncertainty quantification in statistical inference. A key distinction is that classical uncertainty quantification takes the form of precise probabilities and offers only limited large-sample validity guarantees, whereas the IM's uncertainty quantification is imprecise in such a way that exact, finite-sample valid inference is possible. But are the IM's imprecision and finite-sample validity compatible with statistical efficiency? That is, can IMs be both finite-sample valid and asymptotically efficient? This paper gives an affirmative answer to this question via a new possibilistic Bernstein–von Mises theorem that parallels a fundamental Bayesian result. Among other things, our result shows that the IM solution is efficient in the sense that, asymptotically, its credal set is the smallest that contains the Gaussian distribution with variance equal to the Cramér–Rao lower bound. Moreover, a corresponding version of this new Bernstein–von Mises theorem is presented for problems that involve the elimination of nuisance parameters, which settles an open question concerning the relative efficiency of profiling-based versus extension-based marginalization strategies.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.