Extended Tolman–Oppenheimer–Volkoff Equation in f(R,A) gravity

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Amjad Hussain , Mushtaq Ahmad , M. Farasat Shamir , Adnan Malik , Fatemah Mofarreh
{"title":"Extended Tolman–Oppenheimer–Volkoff Equation in f(R,A) gravity","authors":"Amjad Hussain ,&nbsp;Mushtaq Ahmad ,&nbsp;M. Farasat Shamir ,&nbsp;Adnan Malik ,&nbsp;Fatemah Mofarreh","doi":"10.1016/j.cjph.2025.02.006","DOIUrl":null,"url":null,"abstract":"<div><div>This paper provides a more general version of the Tolman–Oppenheimer–Volkoff equation that shows the hydrostatic equilibrium in the context of the gravitational theory <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>R</mi><mo>,</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span>. This theory is one of several modified theories of gravity that have been proposed. Anisotropic matter content is considered to investigate the compact objects’ equilibrium structure. This work is focused on the linear model <span><math><mrow><mi>R</mi><mo>+</mo><mi>α</mi><mi>A</mi></mrow></math></span>, in which <span><math><mi>R</mi></math></span> is the Ricci scalar, <span><math><mi>A</mi></math></span> is the anticurvature scalar, and <span><math><mi>α</mi></math></span> is the coupling factor. To solve the modified Tolman–Oppenheimer–Volkoff equation, we obtained suitable metric potential functions using the Karmarkar condition and employing an appropriate equation of state. We also determine an extended mass function by using the field equations. In this work, we have found a numerical solution of the dimensionless Tolman–Oppenheimer–Volkoff equation and plotted the mass–radius relation alongside several physical quantities, including radial pressure, mass function, scalar curvature, anisotropy, and the force acting on the system. We conduct the entire analysis using three compact stars: Cen X-3, Her X-1, and LMC X-4. Due to the complexity of the Tolman–Oppenheimer–Volkoff equations, we have employed the numerical technique to find various unknowns that appeared in the problem.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"94 ","pages":"Pages 609-626"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325000498","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a more general version of the Tolman–Oppenheimer–Volkoff equation that shows the hydrostatic equilibrium in the context of the gravitational theory f(R,A). This theory is one of several modified theories of gravity that have been proposed. Anisotropic matter content is considered to investigate the compact objects’ equilibrium structure. This work is focused on the linear model R+αA, in which R is the Ricci scalar, A is the anticurvature scalar, and α is the coupling factor. To solve the modified Tolman–Oppenheimer–Volkoff equation, we obtained suitable metric potential functions using the Karmarkar condition and employing an appropriate equation of state. We also determine an extended mass function by using the field equations. In this work, we have found a numerical solution of the dimensionless Tolman–Oppenheimer–Volkoff equation and plotted the mass–radius relation alongside several physical quantities, including radial pressure, mass function, scalar curvature, anisotropy, and the force acting on the system. We conduct the entire analysis using three compact stars: Cen X-3, Her X-1, and LMC X-4. Due to the complexity of the Tolman–Oppenheimer–Volkoff equations, we have employed the numerical technique to find various unknowns that appeared in the problem.
f(R,A)重力下的扩展Tolman-Oppenheimer-Volkoff方程
本文提供了托尔曼-奥本海默-沃尔科夫方程的一个更一般的版本,它显示了重力理论f(R, a)背景下的流体静力平衡。这个理论是已经提出的几个修正的引力理论之一。考虑各向异性物质含量来研究致密物体的平衡结构。本文研究了线性模型R+αA,其中R为Ricci标量,A为反曲率标量,α为耦合因子。为了求解修正的Tolman-Oppenheimer-Volkoff方程,我们利用Karmarkar条件和适当的状态方程得到了合适的度量势函数。我们还利用场方程确定了一个扩展的质量函数。在这项工作中,我们找到了无因次Tolman-Oppenheimer-Volkoff方程的数值解,并绘制了质量-半径关系以及几个物理量,包括径向压力,质量函数,标量曲率,各向异性和作用在系统上的力。我们使用三颗紧凑型恒星:半人马座X-3,她的X-1和LMC X-4进行整个分析。由于Tolman-Oppenheimer-Volkoff方程的复杂性,我们采用数值技术来寻找问题中出现的各种未知数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信