{"title":"Inhibition of starch retrogradation: Advances in physical, chemical, and biological methods","authors":"Xiaoyuan Zheng, Fankui Zeng","doi":"10.1016/j.ijbiomac.2025.141390","DOIUrl":null,"url":null,"abstract":"<div><div>Starch retrogradation, especially post-gelatinization, is a prevalent storage-induced process wherein amylopectin recrystallization causes starch-based products to harden and develop an inferior texture, thereby impacting digestibility. Consequently, inhibiting this retrogradation is imperative for sustaining product quality. This review presents a comprehensive overview of the key factors influencing starch retrogradation and an in-depth discussion of the physical, chemical, and biological methods used to mitigate this process. Additionally, the characteristics and efficacy of these approaches are explored, and potential future developments in starch retrogradation control are discussed. Overall, this review serves as a valuable reference for advancing research in the inhibition of starch retrogradation.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"306 ","pages":"Article 141390"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813025019415","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Starch retrogradation, especially post-gelatinization, is a prevalent storage-induced process wherein amylopectin recrystallization causes starch-based products to harden and develop an inferior texture, thereby impacting digestibility. Consequently, inhibiting this retrogradation is imperative for sustaining product quality. This review presents a comprehensive overview of the key factors influencing starch retrogradation and an in-depth discussion of the physical, chemical, and biological methods used to mitigate this process. Additionally, the characteristics and efficacy of these approaches are explored, and potential future developments in starch retrogradation control are discussed. Overall, this review serves as a valuable reference for advancing research in the inhibition of starch retrogradation.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.