{"title":"New type of solutions for the critical polyharmonic equation","authors":"Wenjing Chen, Zexi Wang","doi":"10.1016/j.jde.2025.02.058","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the following critical polyharmonic equation<span><span><span><math><mrow><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>m</mi></mrow></msup><mi>u</mi><mo>+</mo><mi>V</mi><mo>(</mo><mo>|</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>|</mo><mo>,</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>)</mo><mi>u</mi><mo>=</mo><msup><mrow><mi>u</mi></mrow><mrow><msup><mrow><mi>m</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>u</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>y</mi><mo>=</mo><mo>(</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>,</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>)</mo><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>3</mn></mrow></msup><mo>,</mo></mrow></math></span></span></span> where <span><math><msup><mrow><mi>m</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>2</mn><mi>N</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>2</mn><mi>m</mi></mrow></mfrac></math></span>, <span><math><mi>N</mi><mo>></mo><mn>4</mn><mi>m</mi><mo>+</mo><mn>1</mn></math></span>, <span><math><mi>m</mi><mo>∈</mo><msup><mrow><mi>N</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span>, and <span><math><mi>V</mi><mo>(</mo><mo>|</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>|</mo><mo>,</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>)</mo></math></span> is a bounded nonnegative function in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi><mo>−</mo><mn>3</mn></mrow></msup></math></span>. By using the reduction argument and local Pohoz̆aev identities, we prove that if <span><math><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn><mi>m</mi></mrow></msup><mi>V</mi><mo>(</mo><mi>r</mi><mo>,</mo><msup><mrow><mi>y</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>)</mo></math></span> has a stable critical point <span><math><mo>(</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msubsup><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>″</mo></mrow></msubsup><mo>)</mo></math></span> with <span><math><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></math></span> and <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msubsup><mrow><mi>y</mi></mrow><mrow><mn>0</mn></mrow><mrow><mo>″</mo></mrow></msubsup><mo>)</mo><mo>></mo><mn>0</mn></math></span>, then the above problem has a new type of solutions, which concentrate at points lying on the top and the bottom circles of a cylinder.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"429 ","pages":"Pages 678-715"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625001809","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the following critical polyharmonic equation where , , , and is a bounded nonnegative function in . By using the reduction argument and local Pohoz̆aev identities, we prove that if has a stable critical point with and , then the above problem has a new type of solutions, which concentrate at points lying on the top and the bottom circles of a cylinder.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics