Xingyu Gan , Haiming Zhang , Zeyu Lu , Kai Ma , Xiaowen Chen , Lingchao Lu , Laibo Li
{"title":"Effect of aluminum dihydrogen phosphate in enhancing mechanical properties and water resistance of magnesium phosphate cement","authors":"Xingyu Gan , Haiming Zhang , Zeyu Lu , Kai Ma , Xiaowen Chen , Lingchao Lu , Laibo Li","doi":"10.1016/j.cemconres.2025.107849","DOIUrl":null,"url":null,"abstract":"<div><div>Incorporating aluminum dihydrogen phosphate into magnesium phosphate cement (MPC), including magnesium ammonium phosphate cement (AMAPC) and magnesium potassium phosphate cement (AMKPC), significantly enhances both compressive strength and water resistance. The results show that AMAPC-3 exhibited a remarkable increase in compressive strength, maintaining a compressive strength retention ratio of 0.83 after 60 days. The addition of aluminum dihydrogen phosphate introduced extra phosphate ions that facilitated the hydration of unreacted MgO, resulting in an increased formation of hydration products such as struvite and k-struvite. Furthermore, it participated in independent hydration reactions, generating new phase Al(OH)<sub>3</sub> gel and Al(PO<sub>4</sub>)·2H<sub>2</sub>O gel, which contributed to a denser microstructure. Microstructural analysis confirmed a refined pore structure and reduced porosity in the modified cements. These findings position aluminum dihydrogen phosphate as an effective modifier for enhancing the water resistance and mechanical properties of MPCs.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"192 ","pages":"Article 107849"},"PeriodicalIF":10.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884625000687","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Incorporating aluminum dihydrogen phosphate into magnesium phosphate cement (MPC), including magnesium ammonium phosphate cement (AMAPC) and magnesium potassium phosphate cement (AMKPC), significantly enhances both compressive strength and water resistance. The results show that AMAPC-3 exhibited a remarkable increase in compressive strength, maintaining a compressive strength retention ratio of 0.83 after 60 days. The addition of aluminum dihydrogen phosphate introduced extra phosphate ions that facilitated the hydration of unreacted MgO, resulting in an increased formation of hydration products such as struvite and k-struvite. Furthermore, it participated in independent hydration reactions, generating new phase Al(OH)3 gel and Al(PO4)·2H2O gel, which contributed to a denser microstructure. Microstructural analysis confirmed a refined pore structure and reduced porosity in the modified cements. These findings position aluminum dihydrogen phosphate as an effective modifier for enhancing the water resistance and mechanical properties of MPCs.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.