TG-FTIR investigations of the pyrolysis of polyurethanes: Quantitative carbon dioxide tracing, decomposition mechanisms, products and mass balances for advanced recycling
Michael Zeller, Daniela Merz, Luca Weigel, Salar Tavakkol, Dieter Stapf
{"title":"TG-FTIR investigations of the pyrolysis of polyurethanes: Quantitative carbon dioxide tracing, decomposition mechanisms, products and mass balances for advanced recycling","authors":"Michael Zeller, Daniela Merz, Luca Weigel, Salar Tavakkol, Dieter Stapf","doi":"10.1016/j.jaap.2025.107048","DOIUrl":null,"url":null,"abstract":"<div><div>Polyurethanes (PUR) are versatile polymers used in a broad range of applications. Conventional mechanical recycling is thus difficult. Chemical recycling such as pyrolytic waste treatment presents new recycling options. Advanced recycling by pyrolysis may help to reduce environmental impacts from PUR wastes. The knowledge of mechanisms, products and yields is essential for the design of efficient pyrolysis processes. Rigid (RPUF) and flexible foams (FPUF), a cast elastomer (CE) and a thermoplastic Polyurethane (TPU) have been investigated by thermogravimetry (TG) and FTIR-spectroscopy. Two decomposition steps have been identified. CO<sub>2</sub> is mainly released in the first decomposition step between 250 °C and 400 °C. The second decomposition step at temperatures above 400 °C releases polyol fragments and marginal amounts of CO<sub>2</sub>. Strong feedstock dependency is evident. Quantitative tracing for the CO<sub>2</sub> release was developed, validated and applied. This allows the resolution of specific decomposition phenomena, mass balancing and distinguishing potentially valuable volatiles from CO<sub>2</sub> and solid residues. CO<sub>2</sub> yields are 12.0 mass-% for RPUF, 4.0 mass-% for FPUF, 3.2 mass-% for CE and 5.3 mass-% for TPU. Considering solids and CO<sub>2</sub> as losses, recycling potentials were determined which are 74 mass-% for RPUF, 90 mass-% for FPUF, 95 mass% for CE and 93 mass-% for TPU. This facilitates further process development based on polymer-specific data.</div></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"188 ","pages":"Article 107048"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237025001019","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polyurethanes (PUR) are versatile polymers used in a broad range of applications. Conventional mechanical recycling is thus difficult. Chemical recycling such as pyrolytic waste treatment presents new recycling options. Advanced recycling by pyrolysis may help to reduce environmental impacts from PUR wastes. The knowledge of mechanisms, products and yields is essential for the design of efficient pyrolysis processes. Rigid (RPUF) and flexible foams (FPUF), a cast elastomer (CE) and a thermoplastic Polyurethane (TPU) have been investigated by thermogravimetry (TG) and FTIR-spectroscopy. Two decomposition steps have been identified. CO2 is mainly released in the first decomposition step between 250 °C and 400 °C. The second decomposition step at temperatures above 400 °C releases polyol fragments and marginal amounts of CO2. Strong feedstock dependency is evident. Quantitative tracing for the CO2 release was developed, validated and applied. This allows the resolution of specific decomposition phenomena, mass balancing and distinguishing potentially valuable volatiles from CO2 and solid residues. CO2 yields are 12.0 mass-% for RPUF, 4.0 mass-% for FPUF, 3.2 mass-% for CE and 5.3 mass-% for TPU. Considering solids and CO2 as losses, recycling potentials were determined which are 74 mass-% for RPUF, 90 mass-% for FPUF, 95 mass% for CE and 93 mass-% for TPU. This facilitates further process development based on polymer-specific data.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.