Balancing catalyst-intermediate interactions: Unlocking high-performance MXene-supported catalysts for two-electron water oxidation reaction from single atoms to nanoparticles

IF 7.7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Jiangtao Wei , Pengyang Ye , Yaqian Zhang, Jiayu Zheng, Qinglan Hao, Weiyi Zhang, Haihong Bao, Botao Teng
{"title":"Balancing catalyst-intermediate interactions: Unlocking high-performance MXene-supported catalysts for two-electron water oxidation reaction from single atoms to nanoparticles","authors":"Jiangtao Wei ,&nbsp;Pengyang Ye ,&nbsp;Yaqian Zhang,&nbsp;Jiayu Zheng,&nbsp;Qinglan Hao,&nbsp;Weiyi Zhang,&nbsp;Haihong Bao,&nbsp;Botao Teng","doi":"10.1016/j.envres.2025.121207","DOIUrl":null,"url":null,"abstract":"<div><div>Two-electron water oxidation reaction (2e-WOR) provides an eco-friendly and cost-efficient approach to H<sub>2</sub>O<sub>2</sub> synthesis. ZnO-based catalysts exhibit outstanding H<sub>2</sub>O<sub>2</sub> activity and selectivity. Exploring the relationship between the structure of different zinc-based catalysts and their 2e-WOR performance is crucial for the rational design and development of high-performance catalysts. In this work, MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) nanosheets were employed as supports to prepare zinc single atoms, ZnO nanoclusters and nanoparticles on MXene. Structural characterization, electrocatalytic evaluation, and density functional theory (DFT) calculations revealed distinct differences in catalyst performance. Zn-SA/MXene and ZnO-NC/MXene exhibit strong interactions with OH radicals, resulting in adsorption energies that greatly exceed the optimal range of −2.4∼−1.6 eV. This excessive interaction hinders efficient hydrogen peroxide production. In contrast, ZnO-NP/MXene achieves a balanced interaction with OH, with adsorption energy approaching the optimal range, leading to superior 2e-WOR activity. These findings highlight the critical role of tuning the interaction strength between active sites and OH radicals to achieve optimal catalytic performance. This work offers valuable theoretical insights and experimental validation for designing high-performance 2e-WOR catalysts, demonstrating that neither excessively strong nor weak interactions are conducive to maximizing efficiency.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"272 ","pages":"Article 121207"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001393512500458X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Two-electron water oxidation reaction (2e-WOR) provides an eco-friendly and cost-efficient approach to H2O2 synthesis. ZnO-based catalysts exhibit outstanding H2O2 activity and selectivity. Exploring the relationship between the structure of different zinc-based catalysts and their 2e-WOR performance is crucial for the rational design and development of high-performance catalysts. In this work, MXene (Ti3C2Tx) nanosheets were employed as supports to prepare zinc single atoms, ZnO nanoclusters and nanoparticles on MXene. Structural characterization, electrocatalytic evaluation, and density functional theory (DFT) calculations revealed distinct differences in catalyst performance. Zn-SA/MXene and ZnO-NC/MXene exhibit strong interactions with OH radicals, resulting in adsorption energies that greatly exceed the optimal range of −2.4∼−1.6 eV. This excessive interaction hinders efficient hydrogen peroxide production. In contrast, ZnO-NP/MXene achieves a balanced interaction with OH, with adsorption energy approaching the optimal range, leading to superior 2e-WOR activity. These findings highlight the critical role of tuning the interaction strength between active sites and OH radicals to achieve optimal catalytic performance. This work offers valuable theoretical insights and experimental validation for designing high-performance 2e-WOR catalysts, demonstrating that neither excessively strong nor weak interactions are conducive to maximizing efficiency.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Research
Environmental Research 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
12.60
自引率
8.40%
发文量
2480
审稿时长
4.7 months
期刊介绍: The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信