Hadeer F. Sabeha , Alshaimaa Hassanin , F.N. Minta , Mohamed Elnawawy , Ayman Mahrous
{"title":"Dst index estimation from cosmic ray and solar wind data during solar cycle 24 using artificial neural networks","authors":"Hadeer F. Sabeha , Alshaimaa Hassanin , F.N. Minta , Mohamed Elnawawy , Ayman Mahrous","doi":"10.1016/j.jastp.2025.106462","DOIUrl":null,"url":null,"abstract":"<div><div>This research employs artificial neural networks (ANNs) to estimate the disturbance storm time (Dst) index using cosmic ray (CR) and solar wind (SW) data from solar cycle 24. A dataset of 1361 events (2008–2019) was compiled and divided into training and testing subsets. Validation was performed using a dataset of 116 events from the year 2005. The flexibility and robustness of the model was further verified with three geomagnetic storms (GSs) representing different conditions during solar cycle 23. The CR parameters, SW parameters, and geomagnetic indices were sourced from the Forbush Effects and Interplanetary Disturbance (FEID) Catalogue and NASA's OMNI database. The ANN model utilized a feedforward neural network with Levenberg-Marquardt backpropagation, achieving optimal performance with a single hidden layer of six neurons, which minimized the root mean square error (RMSE). The model's overall correlation coefficient was 87%, indicating strong predictive capability. The results demonstrate the ANN model's efficacy in capturing complex interactions between solar and cosmic-ray phenomena and their impacts on geomagnetic activity, providing a robust tool for space weather studies. Additionally, the strong correlation observed between the Dst index and cosmic ray data suggests that incorporating these data in future studies could be highly valuable.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"269 ","pages":"Article 106462"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136468262500046X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This research employs artificial neural networks (ANNs) to estimate the disturbance storm time (Dst) index using cosmic ray (CR) and solar wind (SW) data from solar cycle 24. A dataset of 1361 events (2008–2019) was compiled and divided into training and testing subsets. Validation was performed using a dataset of 116 events from the year 2005. The flexibility and robustness of the model was further verified with three geomagnetic storms (GSs) representing different conditions during solar cycle 23. The CR parameters, SW parameters, and geomagnetic indices were sourced from the Forbush Effects and Interplanetary Disturbance (FEID) Catalogue and NASA's OMNI database. The ANN model utilized a feedforward neural network with Levenberg-Marquardt backpropagation, achieving optimal performance with a single hidden layer of six neurons, which minimized the root mean square error (RMSE). The model's overall correlation coefficient was 87%, indicating strong predictive capability. The results demonstrate the ANN model's efficacy in capturing complex interactions between solar and cosmic-ray phenomena and their impacts on geomagnetic activity, providing a robust tool for space weather studies. Additionally, the strong correlation observed between the Dst index and cosmic ray data suggests that incorporating these data in future studies could be highly valuable.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.