Impact of clay content and type on the kinetic and mechanical properties of dental restorations based on Bis-GMA/TEGDMA resin

IF 5.3 2区 地球科学 Q2 CHEMISTRY, PHYSICAL
Afaf Bouzidi , Nawal Khier , Samir Bayou , Mohamed Dehamchia , Abdel-Hamid I. Mourad , Mohamed Mouzali , Said Benfarhi , Abdelghani Merdas
{"title":"Impact of clay content and type on the kinetic and mechanical properties of dental restorations based on Bis-GMA/TEGDMA resin","authors":"Afaf Bouzidi ,&nbsp;Nawal Khier ,&nbsp;Samir Bayou ,&nbsp;Mohamed Dehamchia ,&nbsp;Abdel-Hamid I. Mourad ,&nbsp;Mohamed Mouzali ,&nbsp;Said Benfarhi ,&nbsp;Abdelghani Merdas","doi":"10.1016/j.clay.2025.107747","DOIUrl":null,"url":null,"abstract":"<div><div>The main objective of this work was to investigate the influence of the clay on the kinetic and mechanical properties of methacrylate–clay nanocomposites. This nanocomposites were synthesized using two clays (BNT/MMT). Bentonite (BNT) was exchanged with different quaternary amines, the presence of alkyl ammonium salts was identified from FTIR patterns, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results illustrated that the exchange processes induce an increase in the interlayer spacing of BNT. On the other hand, the outcomes of the work indicated that the silanisation and the incorporation of methacrylate functions has increased the level of dispersion in the organic matrix. The impact of the clay content on the photopolymerization kinetics was also discussed. FTIR-ATR spectroscopy was used to study the influence of the filler content, thickness of the composite layer and temperature on the ultimate conversion. The study of the kinetics at different temperatures enabled the determination of reaction orders m and n, as well as the activation energy (Ea). The mechanical testing results demonstrated that the system with 0.2 % BNT and 0.5 % MMT exhibited better dispersion, leading to optimal flexural strength (FS). The flexural modulus (FM) test, meanwhile, showed that composites containing both types of clay experienced an increase in FM with higher clay concentrations. Notable hardness values (VH) were observed across all the composites when compared. These outcomes of the work confirm the suitability of composites containing MMT or BNT for utilization in dental restorative resins. Further research is required to better interpret their potential performance.</div></div>","PeriodicalId":245,"journal":{"name":"Applied Clay Science","volume":"269 ","pages":"Article 107747"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Clay Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169131725000523","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The main objective of this work was to investigate the influence of the clay on the kinetic and mechanical properties of methacrylate–clay nanocomposites. This nanocomposites were synthesized using two clays (BNT/MMT). Bentonite (BNT) was exchanged with different quaternary amines, the presence of alkyl ammonium salts was identified from FTIR patterns, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The results illustrated that the exchange processes induce an increase in the interlayer spacing of BNT. On the other hand, the outcomes of the work indicated that the silanisation and the incorporation of methacrylate functions has increased the level of dispersion in the organic matrix. The impact of the clay content on the photopolymerization kinetics was also discussed. FTIR-ATR spectroscopy was used to study the influence of the filler content, thickness of the composite layer and temperature on the ultimate conversion. The study of the kinetics at different temperatures enabled the determination of reaction orders m and n, as well as the activation energy (Ea). The mechanical testing results demonstrated that the system with 0.2 % BNT and 0.5 % MMT exhibited better dispersion, leading to optimal flexural strength (FS). The flexural modulus (FM) test, meanwhile, showed that composites containing both types of clay experienced an increase in FM with higher clay concentrations. Notable hardness values (VH) were observed across all the composites when compared. These outcomes of the work confirm the suitability of composites containing MMT or BNT for utilization in dental restorative resins. Further research is required to better interpret their potential performance.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Clay Science
Applied Clay Science 地学-矿物学
CiteScore
10.30
自引率
10.70%
发文量
289
审稿时长
39 days
期刊介绍: Applied Clay Science aims to be an international journal attracting high quality scientific papers on clays and clay minerals, including research papers, reviews, and technical notes. The journal covers typical subjects of Fundamental and Applied Clay Science such as: • Synthesis and purification • Structural, crystallographic and mineralogical properties of clays and clay minerals • Thermal properties of clays and clay minerals • Physico-chemical properties including i) surface and interface properties; ii) thermodynamic properties; iii) mechanical properties • Interaction with water, with polar and apolar molecules • Colloidal properties and rheology • Adsorption, Intercalation, Ionic exchange • Genesis and deposits of clay minerals • Geology and geochemistry of clays • Modification of clays and clay minerals properties by thermal and physical treatments • Modification by chemical treatments with organic and inorganic molecules(organoclays, pillared clays) • Modification by biological microorganisms. etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信