Varvara G. Kubenko, Vladimir A. Pomogaev, Andrey A. Buglak, Alexei I. Kononov
{"title":"Photophysics of 5,6,7,8-tetrahydrobiopterin on a femtosecond time-scale","authors":"Varvara G. Kubenko, Vladimir A. Pomogaev, Andrey A. Buglak, Alexei I. Kononov","doi":"10.1016/j.jphotobiol.2025.113134","DOIUrl":null,"url":null,"abstract":"<div><div>Pterins are naturally occurring compounds widespread in living organisms. 5,6,7,8-Tetrahydrobiopterin (H<sub>4</sub>Bip) is a cofactor of several key enzymes, including NO-synthases and phenylalanine hydroxylase, whereas tetrahydrocyanopterin is a photoreceptor molecule in cyanobacteria. In this regard, tetrahydropterins (H<sub>4</sub>pterins) photochemistry and photophysics have been attracting our attention. H<sub>4</sub>pterins photodegrade in presence of molecular oxygen yielding dihydropterins (H<sub>2</sub>pterins) and oxidized pterins. Meanwhile, the excited states dynamics of H<sub>4</sub>pterins on a femto- and picosecond time-scale remains unclear. To shed light on this area, we perform time-resolved spectroscopy of H<sub>4</sub>Bip using fluorescence up-conversion as well as transient absorption spectroscopy techniques along with TD-DFT non-adiabatic molecular dynamics. We show that the lowest H<sub>4</sub>Bip exited state has a lifetime of ca. 200 fs. Using the BHandHLYP functional and multireference spin-flip (MRSF) method we demonstrate that starting from the S<sub>4</sub> state, H<sub>4</sub>Bip passes to the S<sub>1</sub> state within 50 fs, and after 200 fs a conical intersection with the ground S<sub>0</sub> state is achieved. As a whole, the excited state behavior of H<sub>4</sub>Bip is similar to DNA nucleobases, in particular guanine. These findings allow us to make some speculations about the biochemical role of H<sub>4</sub>pterins photophysics.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"265 ","pages":"Article 113134"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134425000375","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pterins are naturally occurring compounds widespread in living organisms. 5,6,7,8-Tetrahydrobiopterin (H4Bip) is a cofactor of several key enzymes, including NO-synthases and phenylalanine hydroxylase, whereas tetrahydrocyanopterin is a photoreceptor molecule in cyanobacteria. In this regard, tetrahydropterins (H4pterins) photochemistry and photophysics have been attracting our attention. H4pterins photodegrade in presence of molecular oxygen yielding dihydropterins (H2pterins) and oxidized pterins. Meanwhile, the excited states dynamics of H4pterins on a femto- and picosecond time-scale remains unclear. To shed light on this area, we perform time-resolved spectroscopy of H4Bip using fluorescence up-conversion as well as transient absorption spectroscopy techniques along with TD-DFT non-adiabatic molecular dynamics. We show that the lowest H4Bip exited state has a lifetime of ca. 200 fs. Using the BHandHLYP functional and multireference spin-flip (MRSF) method we demonstrate that starting from the S4 state, H4Bip passes to the S1 state within 50 fs, and after 200 fs a conical intersection with the ground S0 state is achieved. As a whole, the excited state behavior of H4Bip is similar to DNA nucleobases, in particular guanine. These findings allow us to make some speculations about the biochemical role of H4pterins photophysics.
期刊介绍:
The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field.
The scope includes:
- Bioluminescence
- Chronobiology
- DNA repair
- Environmental photobiology
- Nanotechnology in photobiology
- Photocarcinogenesis
- Photochemistry of biomolecules
- Photodynamic therapy
- Photomedicine
- Photomorphogenesis
- Photomovement
- Photoreception
- Photosensitization
- Photosynthesis
- Phototechnology
- Spectroscopy of biological systems
- UV and visible radiation effects and vision.