Generalized soft finite element method for elliptic eigenvalue problems

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jipei Chen , Victor M. Calo , Quanling Deng
{"title":"Generalized soft finite element method for elliptic eigenvalue problems","authors":"Jipei Chen ,&nbsp;Victor M. Calo ,&nbsp;Quanling Deng","doi":"10.1016/j.camwa.2025.02.013","DOIUrl":null,"url":null,"abstract":"<div><div>The recently proposed soft finite element method (SoftFEM) reduces the stiffness (condition numbers), consequently improving the overall approximation accuracy. The method subtracts a least-square term that penalizes the gradient jumps across mesh interfaces from the FEM stiffness bilinear form while maintaining the system's coercivity. Herein, we present two generalizations for SoftFEM that aim to improve the approximation accuracy and further reduce the discrete systems' stiffness. Firstly and most naturally, we generalize SoftFEM by adding a least-square term to the mass bilinear form. Superconvergent results of rates <span><math><msup><mrow><mi>h</mi></mrow><mrow><mn>6</mn></mrow></msup></math></span> and <span><math><msup><mrow><mi>h</mi></mrow><mrow><mn>8</mn></mrow></msup></math></span> for eigenvalues are established for linear uniform elements; <span><math><msup><mrow><mi>h</mi></mrow><mrow><mn>8</mn></mrow></msup></math></span> is the highest order of convergence known in the literature. Secondly, we generalize SoftFEM by applying the blended Gaussian-type quadratures. We demonstrate further reductions in stiffness compared to traditional FEM and SoftFEM. The coercivity and analysis of the optimal error convergences follow the work of SoftFEM. Thus, this paper focuses on the numerical study of these generalizations. For linear and uniform elements, analytical eigenpairs, exact eigenvalue errors, and superconvergent error analysis are established. Various numerical examples demonstrate the potential of generalized SoftFEMs for spectral approximation, particularly in high-frequency regimes.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"184 ","pages":"Pages 168-184"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125000665","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The recently proposed soft finite element method (SoftFEM) reduces the stiffness (condition numbers), consequently improving the overall approximation accuracy. The method subtracts a least-square term that penalizes the gradient jumps across mesh interfaces from the FEM stiffness bilinear form while maintaining the system's coercivity. Herein, we present two generalizations for SoftFEM that aim to improve the approximation accuracy and further reduce the discrete systems' stiffness. Firstly and most naturally, we generalize SoftFEM by adding a least-square term to the mass bilinear form. Superconvergent results of rates h6 and h8 for eigenvalues are established for linear uniform elements; h8 is the highest order of convergence known in the literature. Secondly, we generalize SoftFEM by applying the blended Gaussian-type quadratures. We demonstrate further reductions in stiffness compared to traditional FEM and SoftFEM. The coercivity and analysis of the optimal error convergences follow the work of SoftFEM. Thus, this paper focuses on the numerical study of these generalizations. For linear and uniform elements, analytical eigenpairs, exact eigenvalue errors, and superconvergent error analysis are established. Various numerical examples demonstrate the potential of generalized SoftFEMs for spectral approximation, particularly in high-frequency regimes.
最近提出的软有限元法(SoftFEM)降低了刚度(条件数),从而提高了整体近似精度。该方法在保持系统矫顽力的前提下,从有限元刚度双线性方程式中减去一个最小平方项,该最小平方项用于惩罚跨网格界面的梯度跳跃。在此,我们提出了软有限元的两种通用方法,旨在提高近似精度并进一步降低离散系统的刚度。首先,也是最自然的,我们通过在质量双线性方程中加入最小二乘法项来概括 SoftFEM。对于线性均匀元素,我们建立了特征值率为 h6 和 h8 的超收敛结果;h8 是文献中已知的最高收敛阶数。其次,我们通过应用混合高斯型四元数对 SoftFEM 进行了推广。与传统有限元和软有限元相比,我们证明了刚度的进一步降低。矫顽力和最佳误差收敛分析沿袭了 SoftFEM 的工作。因此,本文的重点是对这些泛函进行数值研究。对于线性和均匀元素,本文建立了分析特征对、精确特征值误差和超收敛误差分析。各种数值示例证明了广义软有限元在频谱逼近方面的潜力,尤其是在高频情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信