A scalable well-balanced Taylor-Galerkin scheme for a lava flow depth-integrated model with point source vents

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Federico Gatti , Carlo de Falco , Marco Fois , Luca Formaggia
{"title":"A scalable well-balanced Taylor-Galerkin scheme for a lava flow depth-integrated model with point source vents","authors":"Federico Gatti ,&nbsp;Carlo de Falco ,&nbsp;Marco Fois ,&nbsp;Luca Formaggia","doi":"10.1016/j.camwa.2025.02.014","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a scalable well-balanced numerical method to efficiently solve a modified set of shallow water equations targeting the dynamics of lava flows. The governing equations are an extension of a depth-integrated model already available in the literature and proposed to model lava flows. Here, we consider the presence of vents that act as point sources in the mass and energy equations. Starting from a scheme developed in the framework of landslide simulation, we prove its capability to deal with lava flows. We show its excellent performances in terms of parallel scaling efficiency while maintaining good results in terms of accuracy. To verify the reliability of the proposed simulation tool, we first assess the accuracy and efficiency of the scheme on ideal scenarios. In particular, we investigate the well-balancing property, we simulate benchmarks taken from the literature in the framework of lava flow simulations, and provide relevant scaling results for the parallel implementation of the method. Successively, we challenge the scheme on a real configuration taken from the available literature.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"184 ","pages":"Pages 153-167"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125000677","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a scalable well-balanced numerical method to efficiently solve a modified set of shallow water equations targeting the dynamics of lava flows. The governing equations are an extension of a depth-integrated model already available in the literature and proposed to model lava flows. Here, we consider the presence of vents that act as point sources in the mass and energy equations. Starting from a scheme developed in the framework of landslide simulation, we prove its capability to deal with lava flows. We show its excellent performances in terms of parallel scaling efficiency while maintaining good results in terms of accuracy. To verify the reliability of the proposed simulation tool, we first assess the accuracy and efficiency of the scheme on ideal scenarios. In particular, we investigate the well-balancing property, we simulate benchmarks taken from the literature in the framework of lava flow simulations, and provide relevant scaling results for the parallel implementation of the method. Successively, we challenge the scheme on a real configuration taken from the available literature.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信