The use of polynomial-augmented RBF collocation method with ghost points for plane elastostatic equations of anisotropic functionally graded materials

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Ömer Oruç
{"title":"The use of polynomial-augmented RBF collocation method with ghost points for plane elastostatic equations of anisotropic functionally graded materials","authors":"Ömer Oruç","doi":"10.1016/j.camwa.2025.02.019","DOIUrl":null,"url":null,"abstract":"<div><div>In the current study, we propose an accurate numerical method for plane elastostatic equations of anisotropic functionally graded materials. The proposed method uses radial basis functions augmented with polynomial basis functions in a collocation framework by employing ghost point centers which cover physical domain of considered problem. Unlike in classical collocation approach where the centers and collocation points are taken identically, using ghost centers different from the collocation points greatly improves the accuracy of the proposed method. Addition of polynomial basis function to the radial basis functions stabilized the method against shape parameter of radial basis functions and also increases accuracy of solution, mostly. Some numerical examples are solved via the proposed method both on regular and irregular domains. <span><math><msub><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>, <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and RMS error norms are calculated and for sufficient number of collocation points their values are smaller than <span><math><mn>1</mn><mi>e</mi><mo>−</mo><mn>10</mn></math></span>. The obtained error norms and their comparison with other methods available in literature confirm precision of the suggested numerical method.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"184 ","pages":"Pages 116-133"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125000720","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In the current study, we propose an accurate numerical method for plane elastostatic equations of anisotropic functionally graded materials. The proposed method uses radial basis functions augmented with polynomial basis functions in a collocation framework by employing ghost point centers which cover physical domain of considered problem. Unlike in classical collocation approach where the centers and collocation points are taken identically, using ghost centers different from the collocation points greatly improves the accuracy of the proposed method. Addition of polynomial basis function to the radial basis functions stabilized the method against shape parameter of radial basis functions and also increases accuracy of solution, mostly. Some numerical examples are solved via the proposed method both on regular and irregular domains. L, L2 and RMS error norms are calculated and for sufficient number of collocation points their values are smaller than 1e10. The obtained error norms and their comparison with other methods available in literature confirm precision of the suggested numerical method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信