A novel distributed-order time fractional derivative model of laser-induced thermal therapy for deep-lying tumor

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Xiran Cao , Zhengze Rong , Ping Lin , Liancun Zheng , Xuelan Zhang
{"title":"A novel distributed-order time fractional derivative model of laser-induced thermal therapy for deep-lying tumor","authors":"Xiran Cao ,&nbsp;Zhengze Rong ,&nbsp;Ping Lin ,&nbsp;Liancun Zheng ,&nbsp;Xuelan Zhang","doi":"10.1016/j.camwa.2025.02.015","DOIUrl":null,"url":null,"abstract":"<div><div>The laser-induced thermal therapy (LITT) scheme has proved great efficacy in tumor treatment. Therefore, the research between the heat conduction problems of LITT has become a hot topic in recent years. To seek rational constitutive relations of heat flux and temperature which can describe the heat transfer behavior of LITT, we develop a novel distributed-order time fractional derivative model based on the dual-phase-lag (DPL) model and Pennes bio-heat conduction model in this paper. Physical parameters of the governing equation are approximated using experimental data. Formulated model considers a spectrum of memory and nonlocal characteristics based on the DPL model. Distributed-order integrals are approximated by the summation of multi-fractional terms and fractional derivatives are discretized by the L1 scheme. Source item is introduced into the governing equation to verify the correctness of the numerical methods. The influences of the physical parameters on the tissue temperature are discussed and analyzed in details. Results demonstrate that the proposed model truly performs better compared to the classical Fourier's law and DPL model in describing the heat conduction behavior of LITT.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"184 ","pages":"Pages 107-115"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125000689","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The laser-induced thermal therapy (LITT) scheme has proved great efficacy in tumor treatment. Therefore, the research between the heat conduction problems of LITT has become a hot topic in recent years. To seek rational constitutive relations of heat flux and temperature which can describe the heat transfer behavior of LITT, we develop a novel distributed-order time fractional derivative model based on the dual-phase-lag (DPL) model and Pennes bio-heat conduction model in this paper. Physical parameters of the governing equation are approximated using experimental data. Formulated model considers a spectrum of memory and nonlocal characteristics based on the DPL model. Distributed-order integrals are approximated by the summation of multi-fractional terms and fractional derivatives are discretized by the L1 scheme. Source item is introduced into the governing equation to verify the correctness of the numerical methods. The influences of the physical parameters on the tissue temperature are discussed and analyzed in details. Results demonstrate that the proposed model truly performs better compared to the classical Fourier's law and DPL model in describing the heat conduction behavior of LITT.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信