The role of artificial intelligence integrating multi-omics in breast cancer

IF 0.2 Q4 OBSTETRICS & GYNECOLOGY
Raquel Gómez-Bravo , Benjamín Walbaum , Elia Segui , Montserrat Muñoz
{"title":"The role of artificial intelligence integrating multi-omics in breast cancer","authors":"Raquel Gómez-Bravo ,&nbsp;Benjamín Walbaum ,&nbsp;Elia Segui ,&nbsp;Montserrat Muñoz","doi":"10.1016/j.senol.2025.100677","DOIUrl":null,"url":null,"abstract":"<div><div>In an era of precision oncology, genomic testing plays a crucial role in the management of breast cancer. A variety of complex techniques for germline, somatic, and gene expression testing are routinely used as part of our clinical practice. However, challenges remain in both interpreting genomic data and in the ever-expanding breadth of available tumor information. Artificial intelligence (AI), specifically machine learning and deep learning models, can create and facilitate the interpretation of complex genetic data, predict patient outcomes, and personalize treatment plans. Herein, we present a review of the current role of AI integrating multi-omics in BC.</div></div>","PeriodicalId":38058,"journal":{"name":"Revista de Senologia y Patologia Mamaria","volume":"38 3","pages":"Article 100677"},"PeriodicalIF":0.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Senologia y Patologia Mamaria","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0214158225000131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In an era of precision oncology, genomic testing plays a crucial role in the management of breast cancer. A variety of complex techniques for germline, somatic, and gene expression testing are routinely used as part of our clinical practice. However, challenges remain in both interpreting genomic data and in the ever-expanding breadth of available tumor information. Artificial intelligence (AI), specifically machine learning and deep learning models, can create and facilitate the interpretation of complex genetic data, predict patient outcomes, and personalize treatment plans. Herein, we present a review of the current role of AI integrating multi-omics in BC.
人工智能整合多组学在乳腺癌中的作用
在精确肿瘤学的时代,基因组检测在乳腺癌的管理中起着至关重要的作用。各种复杂的技术,生殖系,体细胞和基因表达测试是常规使用作为我们的临床实践的一部分。然而,在解释基因组数据和不断扩大的可用肿瘤信息广度方面仍然存在挑战。人工智能(AI),特别是机器学习和深度学习模型,可以创建和促进复杂基因数据的解释,预测患者的结果,以及个性化的治疗计划。在此,我们介绍了目前AI整合多组学在BC中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista de Senologia y Patologia Mamaria
Revista de Senologia y Patologia Mamaria Medicine-Obstetrics and Gynecology
CiteScore
0.30
自引率
0.00%
发文量
74
审稿时长
63 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信