{"title":"An adaptive solver for accurate simulation of multicomponent shock-interface problems for thermally perfect species","authors":"Yuqi Wang , Ralf Deiterding , Jianhan Liang","doi":"10.1016/j.compfluid.2025.106587","DOIUrl":null,"url":null,"abstract":"<div><div>A second-order-accurate finite volume method, hybridized by blending an extended double-flux algorithm and a traditionally conservative scheme, is developed. In this scheme, hybrid convective fluxes and hybrid interpolation techniques are designed to ensure stability and accuracy in the presence of both material interfaces and shocks. Two approaches, extended from the original double-flux model, are presented to eliminate the well-known ”pressure oscillation” phenomenon at material interfaces observed with the traditional conservative scheme. Numerous verification simulations confirm that the method can handle multi-dimensional shock-interface problems reliably and efficiently, even in the presence of viscous and reactive terms.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"291 ","pages":"Article 106587"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025000477","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
A second-order-accurate finite volume method, hybridized by blending an extended double-flux algorithm and a traditionally conservative scheme, is developed. In this scheme, hybrid convective fluxes and hybrid interpolation techniques are designed to ensure stability and accuracy in the presence of both material interfaces and shocks. Two approaches, extended from the original double-flux model, are presented to eliminate the well-known ”pressure oscillation” phenomenon at material interfaces observed with the traditional conservative scheme. Numerous verification simulations confirm that the method can handle multi-dimensional shock-interface problems reliably and efficiently, even in the presence of viscous and reactive terms.
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.