Enhancing monoclonal antibodies with natural products: Mechanisms and applications

Madhan Gunasekaran , Sarvananda L , Amal D. Premarathna
{"title":"Enhancing monoclonal antibodies with natural products: Mechanisms and applications","authors":"Madhan Gunasekaran ,&nbsp;Sarvananda L ,&nbsp;Amal D. Premarathna","doi":"10.1016/j.ipha.2024.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>Monoclonal antibodies (mAbs) have revolutionized therapeutic strategies across a broad spectrum of diseases, yet their efficacy remains constrained by challenges such as suboptimal tumor penetration and insufficient cytotoxicity. This study pioneers an integrative approach, harnessing the untapped potential of plant-derived glycosides and innovative biotechnological advances to redefine mAb efficacy. Specifically, we investigate the novel application of beta-glucan analogs engineered for enhanced immunomodulatory effects, targeting not only malignant cells but also the tumor microenvironment to optimize mAb penetration. Moreover, we introduce a groundbreaking strategy in antibody-drug conjugates (ADCs) by leveraging previously unexploited natural toxins, such as modified saporin variants, which are bioengineered to achieve selective cytotoxicity with minimal off-target effects. This novel ADC formulation is further optimized through the use of nanoencapsulation techniques, ensuring precise delivery and controlled release within the tumor milieu. The research also focuses on hybrid expression systems, scalable mAb production, nanoencapsulation for targeted delivery, and the integration of natural and synthetic techniques for improved antibody therapies. By combining plant-based expression systems with synthetic biology tools, creating a hybrid platform that surpasses traditional plant or mammalian systems in both yield and safety. This approach not only reduces production costs but also introduces a scalable method for the rapid adaptation of mAbs in response to emerging pathogens or tumor mutations. This study opens new avenues by blending natural and synthetic methodologies, ultimately enhancing the therapeutic outcomes of mAbs across various disease states. It underscores the transformative potential of integrating cutting-edge technologies with natural compounds, paving the way for more effective, targeted, and adaptable antibody-based therapies.</div></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":"3 1","pages":"Pages 84-89"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949866X24000911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Monoclonal antibodies (mAbs) have revolutionized therapeutic strategies across a broad spectrum of diseases, yet their efficacy remains constrained by challenges such as suboptimal tumor penetration and insufficient cytotoxicity. This study pioneers an integrative approach, harnessing the untapped potential of plant-derived glycosides and innovative biotechnological advances to redefine mAb efficacy. Specifically, we investigate the novel application of beta-glucan analogs engineered for enhanced immunomodulatory effects, targeting not only malignant cells but also the tumor microenvironment to optimize mAb penetration. Moreover, we introduce a groundbreaking strategy in antibody-drug conjugates (ADCs) by leveraging previously unexploited natural toxins, such as modified saporin variants, which are bioengineered to achieve selective cytotoxicity with minimal off-target effects. This novel ADC formulation is further optimized through the use of nanoencapsulation techniques, ensuring precise delivery and controlled release within the tumor milieu. The research also focuses on hybrid expression systems, scalable mAb production, nanoencapsulation for targeted delivery, and the integration of natural and synthetic techniques for improved antibody therapies. By combining plant-based expression systems with synthetic biology tools, creating a hybrid platform that surpasses traditional plant or mammalian systems in both yield and safety. This approach not only reduces production costs but also introduces a scalable method for the rapid adaptation of mAbs in response to emerging pathogens or tumor mutations. This study opens new avenues by blending natural and synthetic methodologies, ultimately enhancing the therapeutic outcomes of mAbs across various disease states. It underscores the transformative potential of integrating cutting-edge technologies with natural compounds, paving the way for more effective, targeted, and adaptable antibody-based therapies.
用天然产品增强单克隆抗体:机制与应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信