A critical review on zinc oxide nanoparticles: Synthesis, properties and biomedical applications

Suddhasattya Dey , Dibya lochan Mohanty , Noota Divya , Vasudha Bakshi , Anshuman Mohanty , Deepankar Rath , Sriparni Das , Arijit Mondal , Sourav Roy , Rajarshee Sabui
{"title":"A critical review on zinc oxide nanoparticles: Synthesis, properties and biomedical applications","authors":"Suddhasattya Dey ,&nbsp;Dibya lochan Mohanty ,&nbsp;Noota Divya ,&nbsp;Vasudha Bakshi ,&nbsp;Anshuman Mohanty ,&nbsp;Deepankar Rath ,&nbsp;Sriparni Das ,&nbsp;Arijit Mondal ,&nbsp;Sourav Roy ,&nbsp;Rajarshee Sabui","doi":"10.1016/j.ipha.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>ZnO-NPs is an inorganic metal oxide that meets as medicine, a preservative in packaging, as well as an antibacterial agent without risk. The qualities of ZnO-NPs are influenced by their size, shape, concentration, and length of contact with the bacterial cell. There are many uses for ZnO including food technology, agriculture, cosmetology, optoelectronics, drug transporters, and antibacterial agents.</div></div><div><h3>Methods</h3><div>The antibacterial potential of ZnO-NPs mediated by plant extracts is superior against bacterial and fungal infections and human diseases. Trifolium, Justicia adhathoda, Physalis alkekengi L, Cassia auriculata, Pretence blossoms, Aloe barbadenis, Pongamia pinnata, Limoniaacidissima, Plectranthusamboinicus, Sedum alfredii Hance, and Aspidoterys cordata have all been discovered as excellent sources for the synthesis of NPs. ZnO-NPs is an inorganic metal oxide that meets the above-mentioned requirements, which can be utilised as medicine, a preservative in packaging, as well as an antibacterial agent without risk16. The qualities of ZnO-NPs are influenced by their size, shape, concentration, and length of contact with the bacterial cell.</div></div><div><h3>Conclusion</h3><div>It provides an overview of the numerous synthesis approaches, characterization techniques, and biomedical uses of organically generated ZnO-NPs in food, pharmaceutical and textile sectors. It has been discovered that ZnO-NPs produced by green synthesis are more useful for pharmacological and biological applications, particularly antimicrobials.</div></div>","PeriodicalId":100682,"journal":{"name":"Intelligent Pharmacy","volume":"3 1","pages":"Pages 53-70"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Pharmacy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949866X24000893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

ZnO-NPs is an inorganic metal oxide that meets as medicine, a preservative in packaging, as well as an antibacterial agent without risk. The qualities of ZnO-NPs are influenced by their size, shape, concentration, and length of contact with the bacterial cell. There are many uses for ZnO including food technology, agriculture, cosmetology, optoelectronics, drug transporters, and antibacterial agents.

Methods

The antibacterial potential of ZnO-NPs mediated by plant extracts is superior against bacterial and fungal infections and human diseases. Trifolium, Justicia adhathoda, Physalis alkekengi L, Cassia auriculata, Pretence blossoms, Aloe barbadenis, Pongamia pinnata, Limoniaacidissima, Plectranthusamboinicus, Sedum alfredii Hance, and Aspidoterys cordata have all been discovered as excellent sources for the synthesis of NPs. ZnO-NPs is an inorganic metal oxide that meets the above-mentioned requirements, which can be utilised as medicine, a preservative in packaging, as well as an antibacterial agent without risk16. The qualities of ZnO-NPs are influenced by their size, shape, concentration, and length of contact with the bacterial cell.

Conclusion

It provides an overview of the numerous synthesis approaches, characterization techniques, and biomedical uses of organically generated ZnO-NPs in food, pharmaceutical and textile sectors. It has been discovered that ZnO-NPs produced by green synthesis are more useful for pharmacological and biological applications, particularly antimicrobials.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信