Loosely nanostructured polyamide membranes with rapid water transport for efficient molecule/ion separation

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Zhen Lu , Xingming Wu , Baixue Liu , Zhenyu Yang , Yatao Zhang , Wenheng Jing , Shi-Peng Sun , Junyong Zhu
{"title":"Loosely nanostructured polyamide membranes with rapid water transport for efficient molecule/ion separation","authors":"Zhen Lu ,&nbsp;Xingming Wu ,&nbsp;Baixue Liu ,&nbsp;Zhenyu Yang ,&nbsp;Yatao Zhang ,&nbsp;Wenheng Jing ,&nbsp;Shi-Peng Sun ,&nbsp;Junyong Zhu","doi":"10.1016/j.memsci.2025.123901","DOIUrl":null,"url":null,"abstract":"<div><div>Highly permeable nanofiltration membranes comprising selective polyamide nanofilms hold significant promise for energy-efficient molecule/ion separations. However, current polyamide-based nanofiltration membranes, made through polymerization between highly reactive piperazine and triacyl chloride, exhibiting high retention of divalent salts, limiting their applicability for molecule/ion separations such as dye or antibiotics desalination. Herein, we report the fabrication of a loosely nanostructured poly(bipiperidine-amide) membrane via dorsal coating interfacial polymerization (DC-IP) using Kevlar hydrogel as porous support. The hydrogen-bonding and electrostatic interaction between bipiperidine and Kevlar hydrogel play a role in the formation of winkled ring-shaped nanostructures, which effectively enhance water transport area. By employing 4,4′-bipiperidine, a nonplanar monomer with a longer reaction size distance, the resulting membranes exhibited higher free volume and stronger pore connectivity compared to poly(piperazine-amide) counterparts, as evidenced by both experimental and simulation analyses. The impact of monomer concentration and solution pH on the DC-IP parameters influencing membrane separation performance was thoroughly investigated. Importantly, the optimized polyamide membranes demonstrated an exceptional water permeance of 70.1 L m<sup>−2</sup> h<sup>−1</sup> bar<sup>−1</sup>, high dye removal efficiency (Congo red, 99.4 %), and low divalent salt rejection (Na<sub>2</sub>SO<sub>4</sub>, 38.6 %). Furthermore, the membranes exhibited high antifouling capability and long-term operational stability, rendering them highly promising for rapid and durable dye/salt separations. This study underscores the potential of utilizing moderately reactive bipiperidine to fabricate high-porosity polyamide membranes for fast molecule/ion separation.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"722 ","pages":"Article 123901"},"PeriodicalIF":8.4000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825002145","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Highly permeable nanofiltration membranes comprising selective polyamide nanofilms hold significant promise for energy-efficient molecule/ion separations. However, current polyamide-based nanofiltration membranes, made through polymerization between highly reactive piperazine and triacyl chloride, exhibiting high retention of divalent salts, limiting their applicability for molecule/ion separations such as dye or antibiotics desalination. Herein, we report the fabrication of a loosely nanostructured poly(bipiperidine-amide) membrane via dorsal coating interfacial polymerization (DC-IP) using Kevlar hydrogel as porous support. The hydrogen-bonding and electrostatic interaction between bipiperidine and Kevlar hydrogel play a role in the formation of winkled ring-shaped nanostructures, which effectively enhance water transport area. By employing 4,4′-bipiperidine, a nonplanar monomer with a longer reaction size distance, the resulting membranes exhibited higher free volume and stronger pore connectivity compared to poly(piperazine-amide) counterparts, as evidenced by both experimental and simulation analyses. The impact of monomer concentration and solution pH on the DC-IP parameters influencing membrane separation performance was thoroughly investigated. Importantly, the optimized polyamide membranes demonstrated an exceptional water permeance of 70.1 L m−2 h−1 bar−1, high dye removal efficiency (Congo red, 99.4 %), and low divalent salt rejection (Na2SO4, 38.6 %). Furthermore, the membranes exhibited high antifouling capability and long-term operational stability, rendering them highly promising for rapid and durable dye/salt separations. This study underscores the potential of utilizing moderately reactive bipiperidine to fabricate high-porosity polyamide membranes for fast molecule/ion separation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信