Enhanced osteogenic differentiation of human periodontal ligament cells by mature osteoclasts

IF 2.6 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Sumit Suamphan , Anupong Makeudom , Suttichai Krisanaprakornkit , Pimphorn Meekhantong , Ekapong Dechtham , Chidchanok Leethanakul
{"title":"Enhanced osteogenic differentiation of human periodontal ligament cells by mature osteoclasts","authors":"Sumit Suamphan ,&nbsp;Anupong Makeudom ,&nbsp;Suttichai Krisanaprakornkit ,&nbsp;Pimphorn Meekhantong ,&nbsp;Ekapong Dechtham ,&nbsp;Chidchanok Leethanakul","doi":"10.1016/j.job.2025.100632","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Several <em>in vitro</em> studies have shown that reverse signaling from osteoclasts regulates osteoblast differentiation and mineralization. However, none of these studies have reported the effects of this signaling pathway on periodontal ligament (PDL) cells. Therefore, in this study, we aimed to investigate the interaction between receptor activators of nuclear factor kappa B (RANK) released from mature human osteoclasts and the membranous RANK ligand (RANKL) in human PDL cells.</div></div><div><h3>Methods</h3><div>Multinucleated mature human osteoclasts were differentiated from peripheral blood mononuclear cells upon incubation with recombinant macrophage colony-stimulating factor and RANKL. Mature osteoclasts and human PDL cells were characterized. A mature osteoclast-conditioned medium (OC-CM) was used to induce osteogenic differentiation of PDL cells. Mechanistic analysis of RANK-RANKL reverse signaling were conducted to determine the regulation of osteogenic induction using conditioned medium from mature osteoclasts treated with GW4869 (GW–OC–CM) or PDL cells pretreated with recombinant human osteoprotegerin (OPG).</div></div><div><h3>Results</h3><div>OC-CM significantly upregulated the mRNA expression of osteogenic genes and enhanced the osteogenic differentiation and biomineralization of PDL cells (<em>p</em> &lt; 0.05). GW–OC–CM significantly reduced the expression of osteogenic genes, osteogenic differentiation, and biomineralization in PDL cells (<em>p</em> &lt; 0.05). Similarly, the pretreatment of PDL cells with OPG before OC-CM treatment significantly reduced the osteogenic induction of PDL cells (<em>p</em> &lt; 0.05).</div></div><div><h3>Conclusion</h3><div>Mature osteoclasts can induce osteogenesis in human PDL cells via RANK-RANKL reverse signaling.</div></div>","PeriodicalId":45851,"journal":{"name":"Journal of Oral Biosciences","volume":"67 2","pages":"Article 100632"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1349007925000210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

Several in vitro studies have shown that reverse signaling from osteoclasts regulates osteoblast differentiation and mineralization. However, none of these studies have reported the effects of this signaling pathway on periodontal ligament (PDL) cells. Therefore, in this study, we aimed to investigate the interaction between receptor activators of nuclear factor kappa B (RANK) released from mature human osteoclasts and the membranous RANK ligand (RANKL) in human PDL cells.

Methods

Multinucleated mature human osteoclasts were differentiated from peripheral blood mononuclear cells upon incubation with recombinant macrophage colony-stimulating factor and RANKL. Mature osteoclasts and human PDL cells were characterized. A mature osteoclast-conditioned medium (OC-CM) was used to induce osteogenic differentiation of PDL cells. Mechanistic analysis of RANK-RANKL reverse signaling were conducted to determine the regulation of osteogenic induction using conditioned medium from mature osteoclasts treated with GW4869 (GW–OC–CM) or PDL cells pretreated with recombinant human osteoprotegerin (OPG).

Results

OC-CM significantly upregulated the mRNA expression of osteogenic genes and enhanced the osteogenic differentiation and biomineralization of PDL cells (p < 0.05). GW–OC–CM significantly reduced the expression of osteogenic genes, osteogenic differentiation, and biomineralization in PDL cells (p < 0.05). Similarly, the pretreatment of PDL cells with OPG before OC-CM treatment significantly reduced the osteogenic induction of PDL cells (p < 0.05).

Conclusion

Mature osteoclasts can induce osteogenesis in human PDL cells via RANK-RANKL reverse signaling.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Oral Biosciences
Journal of Oral Biosciences DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
4.40
自引率
12.50%
发文量
57
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信