Buckled stretchable organic light-emitting diode array with planar light-emitting pixels by strain engineering

IF 2.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shi-Xin Jia, Da Yin, Hao-Yang Zhang, Su-Heng Li, Yue-Feng Liu, Jing Feng
{"title":"Buckled stretchable organic light-emitting diode array with planar light-emitting pixels by strain engineering","authors":"Shi-Xin Jia,&nbsp;Da Yin,&nbsp;Hao-Yang Zhang,&nbsp;Su-Heng Li,&nbsp;Yue-Feng Liu,&nbsp;Jing Feng","doi":"10.1016/j.orgel.2025.107216","DOIUrl":null,"url":null,"abstract":"<div><div>Stretchable organic light-emitting diodes (SOLEDs) based on buckled structures have been widely studied and offer broad application prospects in wearable electronics, deformable displays and electronic skin due to their high brightness and efficiency, large stretchability, and straightforward fabrication process. However, buckles are composed of a large number of wavy microstructures which bring large bending strain and uneven surface to the light-emitting regions. These negative factors increase the risk of device performance degradation, reduce the brightness uniformity, and distort the pixels. The negative effects are amplified by changes of the buckles’ morphology during stretching. In this paper, we solve these issues in buckled SOLEDs by strain engineering. Strain isolation islands are introduced into the flexible substrate to bear the compressive stress from the elastic tape and protect the light-emitting regions from forming buckles. As a result, a buckled SOLED array with planar light-emitting regions have been obtained. It shows a maximum one-dimensional (1D) stretchability of 50 % and a two-dimensional stretchability (2D) of 30 %. The pixels in the SOELD array exhibit efficient, stable and uniform electroluminescent (EL) performance. After 1000 times of cyclic stretching, the current efficiency, shape and area of each pixel in the array barely change, demonstrating the potential of the SOLEDs for stretchable display applications.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"140 ","pages":"Article 107216"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119925000229","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stretchable organic light-emitting diodes (SOLEDs) based on buckled structures have been widely studied and offer broad application prospects in wearable electronics, deformable displays and electronic skin due to their high brightness and efficiency, large stretchability, and straightforward fabrication process. However, buckles are composed of a large number of wavy microstructures which bring large bending strain and uneven surface to the light-emitting regions. These negative factors increase the risk of device performance degradation, reduce the brightness uniformity, and distort the pixels. The negative effects are amplified by changes of the buckles’ morphology during stretching. In this paper, we solve these issues in buckled SOLEDs by strain engineering. Strain isolation islands are introduced into the flexible substrate to bear the compressive stress from the elastic tape and protect the light-emitting regions from forming buckles. As a result, a buckled SOLED array with planar light-emitting regions have been obtained. It shows a maximum one-dimensional (1D) stretchability of 50 % and a two-dimensional stretchability (2D) of 30 %. The pixels in the SOELD array exhibit efficient, stable and uniform electroluminescent (EL) performance. After 1000 times of cyclic stretching, the current efficiency, shape and area of each pixel in the array barely change, demonstrating the potential of the SOLEDs for stretchable display applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Organic Electronics
Organic Electronics 工程技术-材料科学:综合
CiteScore
6.60
自引率
6.20%
发文量
238
审稿时长
44 days
期刊介绍: Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc. Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信