Comprehensive analysis of immune subtype characterization on identification of potential cells and drugs to predict response to immune checkpoint inhibitors for hepatocellular carcinoma
Guichuan Lai , Biao Xie , Cong Zhang , Xiaoni Zhong , Jielian Deng , Kangjie Li , Hui Liu , Yuan Zhang , Anbin Liu , Yi Liu , Jie Fan , Tianyi Zhou , Wei Wang , Ailong Huang
{"title":"Comprehensive analysis of immune subtype characterization on identification of potential cells and drugs to predict response to immune checkpoint inhibitors for hepatocellular carcinoma","authors":"Guichuan Lai , Biao Xie , Cong Zhang , Xiaoni Zhong , Jielian Deng , Kangjie Li , Hui Liu , Yuan Zhang , Anbin Liu , Yi Liu , Jie Fan , Tianyi Zhou , Wei Wang , Ailong Huang","doi":"10.1016/j.gendis.2024.101471","DOIUrl":null,"url":null,"abstract":"<div><div>Immunosubtyping enables the segregation of immune responders from non-responders. However, numerous studies failed to focus on the integration of cellular heterogeneity and immunophenotyping in the prediction of hepatocellular carcinoma (HCC) patients' response to immune checkpoint inhibitors (ICIs). We categorized HCC patients into various immune subtypes based on feature scores linked to ICI response. Single-cell sequencing technology was to investigate the cellular heterogeneity of different immune subtypes and acquire significant ICI response-associated cells. Candidate drugs were identified using a blend of various drug databases and network approaches. HCC patients were divided into two distinct immune subtypes based on characterization scores of 151 immune-related gene sets. Patients in both subtypes showed varying overall survival, immunity levels, biological activities, and TP53 mutation rates. Subtype 1-related natural killer cells showed a positive correlation with immune-promoting scores but a negative correlation with immune-suppressing scores. Notably, docetaxel sensitivity in HCC patients rose as the levels of subtype 1-related natural killer cells increased. Our study demonstrated that immune subtypes have cellular heterogeneity in predicting response to ICIs. A combination of subtype 1-associated natural killer cells and docetaxel may offer new hope for ICI treatment in HCC.</div></div>","PeriodicalId":12689,"journal":{"name":"Genes & Diseases","volume":"12 3","pages":"Article 101471"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & Diseases","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235230422400268X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunosubtyping enables the segregation of immune responders from non-responders. However, numerous studies failed to focus on the integration of cellular heterogeneity and immunophenotyping in the prediction of hepatocellular carcinoma (HCC) patients' response to immune checkpoint inhibitors (ICIs). We categorized HCC patients into various immune subtypes based on feature scores linked to ICI response. Single-cell sequencing technology was to investigate the cellular heterogeneity of different immune subtypes and acquire significant ICI response-associated cells. Candidate drugs were identified using a blend of various drug databases and network approaches. HCC patients were divided into two distinct immune subtypes based on characterization scores of 151 immune-related gene sets. Patients in both subtypes showed varying overall survival, immunity levels, biological activities, and TP53 mutation rates. Subtype 1-related natural killer cells showed a positive correlation with immune-promoting scores but a negative correlation with immune-suppressing scores. Notably, docetaxel sensitivity in HCC patients rose as the levels of subtype 1-related natural killer cells increased. Our study demonstrated that immune subtypes have cellular heterogeneity in predicting response to ICIs. A combination of subtype 1-associated natural killer cells and docetaxel may offer new hope for ICI treatment in HCC.
期刊介绍:
Genes & Diseases is an international journal for molecular and translational medicine. The journal primarily focuses on publishing investigations on the molecular bases and experimental therapeutics of human diseases. Publication formats include full length research article, review article, short communication, correspondence, perspectives, commentary, views on news, and research watch.
Aims and Scopes
Genes & Diseases publishes rigorously peer-reviewed and high quality original articles and authoritative reviews that focus on the molecular bases of human diseases. Emphasis will be placed on hypothesis-driven, mechanistic studies relevant to pathogenesis and/or experimental therapeutics of human diseases. The journal has worldwide authorship, and a broad scope in basic and translational biomedical research of molecular biology, molecular genetics, and cell biology, including but not limited to cell proliferation and apoptosis, signal transduction, stem cell biology, developmental biology, gene regulation and epigenetics, cancer biology, immunity and infection, neuroscience, disease-specific animal models, gene and cell-based therapies, and regenerative medicine.