Edmund H. Antell, Shan Yi, Christopher I. Olivares, Shreya Chaudhuri, Bridger J. Ruyle, Lisa Alvarez-Cohen and David L. Sedlak*,
{"title":"Selective Quantification of Charged and Neutral Polyfluoroalkyl Substances Using the Total Oxidizable Precursor (TOP) Assay","authors":"Edmund H. Antell, Shan Yi, Christopher I. Olivares, Shreya Chaudhuri, Bridger J. Ruyle, Lisa Alvarez-Cohen and David L. Sedlak*, ","doi":"10.1021/acs.est.4c1383710.1021/acs.est.4c13837","DOIUrl":null,"url":null,"abstract":"<p >Perfluoroalkyl acid (PFAA) precursors are a diverse subclass of per- and polyfluoroalkyl substances (PFASs) that can be transformed into PFAAs of public health concern. Unlike strongly acidic PFAAs, precursors can be anionic, cationic, neutral, or zwitterionic. Precursor charge affects the environmental fate, but existing quantification techniques struggle to ascertain the abundance of compounds within each charge group. To fill this gap, we developed and validated a solid-phase extraction procedure that separates precursors by charge and quantifies the sum of the precursors in each fraction with the total oxidizable precursor (TOP) assay. Method performance was demonstrated by spiking known concentrations of ten precursors into aqueous film-forming foam (AFFF)-impacted groundwater, municipal wastewater, and soil samples. Precursor fractionation and recovery were greater in groundwater and soil samples than in wastewater. Use of the method provided results that were consistent with expectations based on precursor transport properties. In surficial soils near an AFFF source zone, anionic precursors with five or fewer perfluorinated carbons accounted for about 95% of PFASs, but less than half of PFASs in the underlying groundwater. In municipal wastewater influent, the sum of precursors exceeded the sum of PFAAs and was approximately equally distributed among all charge fractions.</p><p >A method to quantify perfluoroalkyl acid precursors by charge state was developed and applied to environmental samples to assess the effect of precursor charge on contaminant fate.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 7","pages":"3780–3791 3780–3791"},"PeriodicalIF":11.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.est.4c13837","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c13837","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perfluoroalkyl acid (PFAA) precursors are a diverse subclass of per- and polyfluoroalkyl substances (PFASs) that can be transformed into PFAAs of public health concern. Unlike strongly acidic PFAAs, precursors can be anionic, cationic, neutral, or zwitterionic. Precursor charge affects the environmental fate, but existing quantification techniques struggle to ascertain the abundance of compounds within each charge group. To fill this gap, we developed and validated a solid-phase extraction procedure that separates precursors by charge and quantifies the sum of the precursors in each fraction with the total oxidizable precursor (TOP) assay. Method performance was demonstrated by spiking known concentrations of ten precursors into aqueous film-forming foam (AFFF)-impacted groundwater, municipal wastewater, and soil samples. Precursor fractionation and recovery were greater in groundwater and soil samples than in wastewater. Use of the method provided results that were consistent with expectations based on precursor transport properties. In surficial soils near an AFFF source zone, anionic precursors with five or fewer perfluorinated carbons accounted for about 95% of PFASs, but less than half of PFASs in the underlying groundwater. In municipal wastewater influent, the sum of precursors exceeded the sum of PFAAs and was approximately equally distributed among all charge fractions.
A method to quantify perfluoroalkyl acid precursors by charge state was developed and applied to environmental samples to assess the effect of precursor charge on contaminant fate.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.