Sathira Deegala, Hiruni C. Rathnapala, Sanjeevan Rajendran and Chamari Hettiarachchi*,
{"title":"Transgenic Innovation: Harnessing Cyclotides as Next Generation Pesticides","authors":"Sathira Deegala, Hiruni C. Rathnapala, Sanjeevan Rajendran and Chamari Hettiarachchi*, ","doi":"10.1021/acsomega.4c0966810.1021/acsomega.4c09668","DOIUrl":null,"url":null,"abstract":"<p >Cyclotides are unique cyclic mini proteins derived from plants which are recognized for the distinctive cyclic cystine knot (CCK) structure and the cyclized backbone. To date, more than 760 sequences of cyclotides have been identified across five major families, making them the largest known group of cyclic peptides. These cyclic peptides derived from plants have garnered significant attention due to their remarkable structural stability and diverse bioactivities, including potent insecticidal properties, which offer a promising alternative to conventional pesticides that are often associated with environmental toxicity and resistance development in pests. Advances in transgenic technology have opened new avenues for the sustainable and targeted deployment of cyclotides in pest management. By incorporating cyclotide genes into crops, plants can gain enhanced self-defense mechanisms against insect pests, reducing reliance on chemical pesticides and mitigating ecological impact. This review explores the molecular features essential in cyclotides’ insecticidal activity, the latest breakthroughs in transgenic strategies for cyclotide expression in crops, and the potential challenges and future prospects of this innovative approach. By highlighting the synergy between natural bioactive compounds and genetic engineering, this work underscores the potential of cyclotides as next-generation, eco-friendly biopesticides to address global agricultural challenges.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 7","pages":"6323–6336 6323–6336"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09668","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c09668","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclotides are unique cyclic mini proteins derived from plants which are recognized for the distinctive cyclic cystine knot (CCK) structure and the cyclized backbone. To date, more than 760 sequences of cyclotides have been identified across five major families, making them the largest known group of cyclic peptides. These cyclic peptides derived from plants have garnered significant attention due to their remarkable structural stability and diverse bioactivities, including potent insecticidal properties, which offer a promising alternative to conventional pesticides that are often associated with environmental toxicity and resistance development in pests. Advances in transgenic technology have opened new avenues for the sustainable and targeted deployment of cyclotides in pest management. By incorporating cyclotide genes into crops, plants can gain enhanced self-defense mechanisms against insect pests, reducing reliance on chemical pesticides and mitigating ecological impact. This review explores the molecular features essential in cyclotides’ insecticidal activity, the latest breakthroughs in transgenic strategies for cyclotide expression in crops, and the potential challenges and future prospects of this innovative approach. By highlighting the synergy between natural bioactive compounds and genetic engineering, this work underscores the potential of cyclotides as next-generation, eco-friendly biopesticides to address global agricultural challenges.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.