Regulating the Dynamics of Interpenetrated Porous Frameworks for Inverse C2H6/C2H4 Separation at Elevated Temperature

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jingui Duan, Wei Yang, Jiaqi Wang, Kui Tan, Hao-Long Zhou, Muyu Zhang, Rajamani Krishna, Ling Huang
{"title":"Regulating the Dynamics of Interpenetrated Porous Frameworks for Inverse C2H6/C2H4 Separation at Elevated Temperature","authors":"Jingui Duan, Wei Yang, Jiaqi Wang, Kui Tan, Hao-Long Zhou, Muyu Zhang, Rajamani Krishna, Ling Huang","doi":"10.1002/anie.202425638","DOIUrl":null,"url":null,"abstract":"Selective adsorption of ethane (C2H6) from mixtures containing ethylene (C2H4) is of interest for the direct production of high purity C2H4. However, the extremely similar molecular properties of these gases make this process challenging, particularly at elevated temperatures, an implication of saved energy consumption. To address such challenge, we present a new approach for regulating the temperature-dependent dynamics in hydrogen-bonded interpenetrated frameworks. As a single H-bond linked interpenetrated porous framework, NTU-101-NH2 exhibits emerging structural dynamics in response to C2H6 (37 kPa) and C2H4 (53 kPa) and has shown a record ability to produce polymer-grade C2H4 (15.7 mL g-1) at 328 K, as the shifting of the interpenetrated frameworks here requires a relatively weak stimulus, allowing the optimization of adsorption at a higher temperatures range. Meanwhile, the robust and conveniently prepared NTU-101-NH2 shows good cyclic separation performance. In comparison, the framework response of the percussor NTU-101, connected by three H-bonds, occurs at 293 K and has a moderate separation ability (10.2 mL g-1). This work showcases the first adsorbent for direct C2H4 purification at elevated temperatures, and the insights into the hydrogen-bonded frameworks will pave the way for designing soft families capable of challenging separations with reduced energy requirements.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"11 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202425638","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Selective adsorption of ethane (C2H6) from mixtures containing ethylene (C2H4) is of interest for the direct production of high purity C2H4. However, the extremely similar molecular properties of these gases make this process challenging, particularly at elevated temperatures, an implication of saved energy consumption. To address such challenge, we present a new approach for regulating the temperature-dependent dynamics in hydrogen-bonded interpenetrated frameworks. As a single H-bond linked interpenetrated porous framework, NTU-101-NH2 exhibits emerging structural dynamics in response to C2H6 (37 kPa) and C2H4 (53 kPa) and has shown a record ability to produce polymer-grade C2H4 (15.7 mL g-1) at 328 K, as the shifting of the interpenetrated frameworks here requires a relatively weak stimulus, allowing the optimization of adsorption at a higher temperatures range. Meanwhile, the robust and conveniently prepared NTU-101-NH2 shows good cyclic separation performance. In comparison, the framework response of the percussor NTU-101, connected by three H-bonds, occurs at 293 K and has a moderate separation ability (10.2 mL g-1). This work showcases the first adsorbent for direct C2H4 purification at elevated temperatures, and the insights into the hydrogen-bonded frameworks will pave the way for designing soft families capable of challenging separations with reduced energy requirements.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信