Computational and Experimental Elucidation of the Charge-Dependent Acid-Etching Dynamics and Electrocatalytic Performance of Au25(SR)18q(q = −1, 0, +1) Nanoclusters

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-02-24 DOI:10.1002/smll.202411226
Pan Zhu, Xin Zhu, Xia Zhou, Fang Sun, Yuping Chen, Likai Wang, Zhenghua Tang, Qing Tang
{"title":"Computational and Experimental Elucidation of the Charge-Dependent Acid-Etching Dynamics and Electrocatalytic Performance of Au25(SR)18q(q = −1, 0, +1) Nanoclusters","authors":"Pan Zhu,&nbsp;Xin Zhu,&nbsp;Xia Zhou,&nbsp;Fang Sun,&nbsp;Yuping Chen,&nbsp;Likai Wang,&nbsp;Zhenghua Tang,&nbsp;Qing Tang","doi":"10.1002/smll.202411226","DOIUrl":null,"url":null,"abstract":"<p>Using thiolate-protected Au<sub>25</sub>(SR)<sub>18</sub> nanocluster (NC) with different charge states as the test candidate, how the charge effect affects the etching dynamics of thiolate ligands in acid and the electrocatalytic performance is explored. The ab initio molecular dynamics (AIMD) simulations revealed the charge-dependent reaction kinetics in acid, where the anionic and neutral Au<sub>25</sub>(SCH<sub>3</sub>)<sub>18</sub><sup>q</sup> (q = −1, 0) favorably react with the acid and partially remove the thiolate ligands via two-step proton attack, while the cationic Au<sub>25</sub>(SCH<sub>3</sub>)<sub>18</sub><sup>+</sup> NC is acid-resistant with no tendency for -SR removal. Density functional theory (DFT) calculations further predict that the dethiolated Au sites exhibit enhanced catalytic activity for CO<sub>2</sub> electroreduction to CO, with the anionic Au<sub>25</sub><sup>−</sup> showing significantly superior activity. Acid etching and electrocatalytic experiments further confirmed partial removal of thiolate ligands in Au<sub>25</sub>(SCH<sub>3</sub>)<sub>18</sub><sup>q</sup> (q = −1, 0), with dethiolated Au<sub>25</sub> NCs showing enhanced catalytic performance in CO<sub>2</sub> electroreduction, particularly Au<sub>25</sub><sup>−</sup> exhibiting better activity than Au<sub>25</sub><sup>0</sup>. This work revealed an interesting charge state-mediated interface dynamics and electrocatalytic behaviors in Au<sub>25</sub> NCs, which can be applied to modulate the interface and catalytic properties of other atomically precise metal nanoclusters.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 19","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202411226","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using thiolate-protected Au25(SR)18 nanocluster (NC) with different charge states as the test candidate, how the charge effect affects the etching dynamics of thiolate ligands in acid and the electrocatalytic performance is explored. The ab initio molecular dynamics (AIMD) simulations revealed the charge-dependent reaction kinetics in acid, where the anionic and neutral Au25(SCH3)18q (q = −1, 0) favorably react with the acid and partially remove the thiolate ligands via two-step proton attack, while the cationic Au25(SCH3)18+ NC is acid-resistant with no tendency for -SR removal. Density functional theory (DFT) calculations further predict that the dethiolated Au sites exhibit enhanced catalytic activity for CO2 electroreduction to CO, with the anionic Au25 showing significantly superior activity. Acid etching and electrocatalytic experiments further confirmed partial removal of thiolate ligands in Au25(SCH3)18q (q = −1, 0), with dethiolated Au25 NCs showing enhanced catalytic performance in CO2 electroreduction, particularly Au25 exhibiting better activity than Au250. This work revealed an interesting charge state-mediated interface dynamics and electrocatalytic behaviors in Au25 NCs, which can be applied to modulate the interface and catalytic properties of other atomically precise metal nanoclusters.

Abstract Image

Abstract Image

Au25(SR)18q(q =−1,0,+1)纳米团簇电荷依赖酸蚀动力学和电催化性能的计算和实验研究
以不同电荷状态的硫酸盐保护的Au25(SR)18纳米簇(NC)作为候选材料,探讨了电荷效应对硫酸盐配体在酸中的蚀刻动力学和电催化性能的影响。从头算分子动力学(AIMD)模拟揭示了酸中电荷依赖的反应动力学,其中阴离子和中性Au25(SCH3)18q (q = - 1,0)与酸有利反应,并通过两步质子攻击部分去除硫代酸配体,而阳离子Au25(SCH3)18+ NC具有耐酸性,没有去除-SR的倾向。密度泛函理论(DFT)进一步预测,去硫化Au位点对CO2电还原成CO的催化活性增强,阴离子Au25−表现出明显的优势活性。酸蚀和电催化实验进一步证实了Au25(SCH3)18q (q = - 1,0)中硫代盐的部分去除,去硫代Au25 NCs在CO2电还原中的催化性能增强,特别是Au25 -表现出比Au250更好的活性。这项工作揭示了Au25纳米簇中有趣的电荷态介导的界面动力学和电催化行为,这可以应用于调节其他原子精密金属纳米簇的界面和催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信