Caroline Reisacher, Estelle Saifi, Elisabeth Ageron, Robert Theodor Mallmann, Norbert Klugbauer, David Skurnik, Laurence Arbibe
{"title":"The Human-Specific miR-6762-5p Is an Activator of RhoA GTPase Enhancing Shigella flexneri Intercellular Spreading","authors":"Caroline Reisacher, Estelle Saifi, Elisabeth Ageron, Robert Theodor Mallmann, Norbert Klugbauer, David Skurnik, Laurence Arbibe","doi":"10.1111/mmi.15352","DOIUrl":null,"url":null,"abstract":"MicroRNAs have recently emerged as major players in host –bacterial pathogen interactions, either as part of the host defense mechanism to neutralize infection or as a bacterial arsenal aimed at subverting host cell functions. Here, we identify the newly evolved human microRNA miR-6762-5p as a new player in the host–<i>Shigella</i> interplay. A microarray analysis in infected epithelial cells allowed the detection of this miRNA exclusively during the late phase of infection. Conditional expression of miR-6762-5p combined with a transcriptome analysis indicated a role in cytoskeleton remodeling. Likewise, miR-6762-5p enhanced stress fiber formation through RhoA activation, and <i>in silico</i> analysis identified several regulators of RhoA activity as potential direct transcriptional targets. We further showed that miR-6762-5p expression induces an increase in <i>Shigella</i> intercellular spreading, while miR-6762-5p inhibition reduced bacterial dissemination. We propose a model in which the expression of miR-6762-5p induces cytoskeleton modifications through RhoA activation to achieve a successful dissemination of <i>Shigella</i> in the host.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"51 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15352","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
MicroRNAs have recently emerged as major players in host –bacterial pathogen interactions, either as part of the host defense mechanism to neutralize infection or as a bacterial arsenal aimed at subverting host cell functions. Here, we identify the newly evolved human microRNA miR-6762-5p as a new player in the host–Shigella interplay. A microarray analysis in infected epithelial cells allowed the detection of this miRNA exclusively during the late phase of infection. Conditional expression of miR-6762-5p combined with a transcriptome analysis indicated a role in cytoskeleton remodeling. Likewise, miR-6762-5p enhanced stress fiber formation through RhoA activation, and in silico analysis identified several regulators of RhoA activity as potential direct transcriptional targets. We further showed that miR-6762-5p expression induces an increase in Shigella intercellular spreading, while miR-6762-5p inhibition reduced bacterial dissemination. We propose a model in which the expression of miR-6762-5p induces cytoskeleton modifications through RhoA activation to achieve a successful dissemination of Shigella in the host.
期刊介绍:
Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses.
Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.