Wide-ranging organic nitrogen diets of freshwater Picocyanobacteria

Elliot Druce, Stephen C Maberly, Patricia Sánchez-Baracaldo
{"title":"Wide-ranging organic nitrogen diets of freshwater Picocyanobacteria","authors":"Elliot Druce, Stephen C Maberly, Patricia Sánchez-Baracaldo","doi":"10.1093/ismejo/wrae236","DOIUrl":null,"url":null,"abstract":"Freshwater picocyanobacteria (Syn/Pro clade) contribute substantially to the primary production of inland waters, especially when nitrogen is limiting or co-limiting. Nevertheless, they remain poorly understood ecologically and genomically, with research on their nitrogen acquisition mainly focused on inorganic sources. However, dissolved organic nitrogen is often a major component of the freshwater nitrogen pool and it is increasingly evident that many forms are bioavailable. Comparative genomic analyses, axenic growth assays, and proteomic analyses were used here to investigate organic nitrogen acquisition mechanisms in the Syn/Pro clade. Comparative analysis of the genomes of 295 freshwater and marine strains of picocyanobacteria identified a large diversity of amino acid transporters, the absence of degradation pathways for five amino acids (asparagine, phenylalanine, serine, tryptophan, and tyrosine), and alternative mechanisms for chitin assimilation (direct chitin catabolise vs initial acetylation to chitosan and subsequent degradation). Growth assays demonstrated the widespread bioavailability of amino acids, including basic amino acids though the known basic amino acid transporter is not encoded. This suggests further genetic components are involved, either through extracellular catabolism or the presence of novel transporters. Proteomic analysis demonstrates the dual utilisation of nitrogen and carbon from the amino acid substrate and provides evidence for a mild stress response through the up-regulation of lysine biosynthesis and FtsH1, potentially caused by accumulation of secondary metabolites. Our results are relevant to understanding how picocyanobacteria have come to thrive in dissolved organic nitrogen-rich oligotrophic environments and explores how their different molecular capabilities may influence communities between habitats.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Freshwater picocyanobacteria (Syn/Pro clade) contribute substantially to the primary production of inland waters, especially when nitrogen is limiting or co-limiting. Nevertheless, they remain poorly understood ecologically and genomically, with research on their nitrogen acquisition mainly focused on inorganic sources. However, dissolved organic nitrogen is often a major component of the freshwater nitrogen pool and it is increasingly evident that many forms are bioavailable. Comparative genomic analyses, axenic growth assays, and proteomic analyses were used here to investigate organic nitrogen acquisition mechanisms in the Syn/Pro clade. Comparative analysis of the genomes of 295 freshwater and marine strains of picocyanobacteria identified a large diversity of amino acid transporters, the absence of degradation pathways for five amino acids (asparagine, phenylalanine, serine, tryptophan, and tyrosine), and alternative mechanisms for chitin assimilation (direct chitin catabolise vs initial acetylation to chitosan and subsequent degradation). Growth assays demonstrated the widespread bioavailability of amino acids, including basic amino acids though the known basic amino acid transporter is not encoded. This suggests further genetic components are involved, either through extracellular catabolism or the presence of novel transporters. Proteomic analysis demonstrates the dual utilisation of nitrogen and carbon from the amino acid substrate and provides evidence for a mild stress response through the up-regulation of lysine biosynthesis and FtsH1, potentially caused by accumulation of secondary metabolites. Our results are relevant to understanding how picocyanobacteria have come to thrive in dissolved organic nitrogen-rich oligotrophic environments and explores how their different molecular capabilities may influence communities between habitats.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信