Hyunghoon Cho, David Froelicher, Jeffrey Chen, Manaswitha Edupalli, Apostolos Pyrgelis, Juan R. Troncoso-Pastoriza, Jean-Pierre Hubaux, Bonnie Berger
{"title":"Secure and federated genome-wide association studies for biobank-scale datasets","authors":"Hyunghoon Cho, David Froelicher, Jeffrey Chen, Manaswitha Edupalli, Apostolos Pyrgelis, Juan R. Troncoso-Pastoriza, Jean-Pierre Hubaux, Bonnie Berger","doi":"10.1038/s41588-025-02109-1","DOIUrl":null,"url":null,"abstract":"<p>Sharing data across institutions for genome-wide association studies (GWAS) would enhance the discovery of genetic variation linked to health and disease<sup>1,2</sup>. However, existing data-sharing regulations limit the scope of such collaborations<sup>3</sup>. Although cryptographic tools for secure computation promise to enable collaborative analysis with formal privacy guarantees, existing approaches either are computationally impractical or do not implement current state-of-the-art methods<sup>4,5,6</sup>. We introduce secure federated genome-wide association studies (SF-GWAS), a combination of secure computation frameworks and distributed algorithms that empowers efficient and accurate GWAS on private data held by multiple entities while ensuring data confidentiality. SF-GWAS supports widely used GWAS pipelines based on principal-component analysis or linear mixed models. We demonstrate the accuracy and practical runtimes of SF-GWAS on five datasets, including a UK Biobank cohort of 410,000 individuals, showcasing an order-of-magnitude improvement in runtime compared to previous methods. Our work enables secure collaborative genomic studies at unprecedented scale.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"14 1","pages":""},"PeriodicalIF":31.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-025-02109-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Sharing data across institutions for genome-wide association studies (GWAS) would enhance the discovery of genetic variation linked to health and disease1,2. However, existing data-sharing regulations limit the scope of such collaborations3. Although cryptographic tools for secure computation promise to enable collaborative analysis with formal privacy guarantees, existing approaches either are computationally impractical or do not implement current state-of-the-art methods4,5,6. We introduce secure federated genome-wide association studies (SF-GWAS), a combination of secure computation frameworks and distributed algorithms that empowers efficient and accurate GWAS on private data held by multiple entities while ensuring data confidentiality. SF-GWAS supports widely used GWAS pipelines based on principal-component analysis or linear mixed models. We demonstrate the accuracy and practical runtimes of SF-GWAS on five datasets, including a UK Biobank cohort of 410,000 individuals, showcasing an order-of-magnitude improvement in runtime compared to previous methods. Our work enables secure collaborative genomic studies at unprecedented scale.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution