Adrian Mark Tompkins, Alejandro Casallas, Michie Vianca De Vera
{"title":"Drivers of mesoscale convective aggregation and spatial humidity variability in the tropical western Pacific","authors":"Adrian Mark Tompkins, Alejandro Casallas, Michie Vianca De Vera","doi":"10.1038/s41612-024-00848-2","DOIUrl":null,"url":null,"abstract":"<p>We examine mesoscale convective organisation in the tropical western Pacific using a multivariate analysis of column humidity, precipitation and sea surface temperature (SST) observations. We demonstrate that in boreal summer and autumn, convection remains spatially random despite radiative-feedbacks acting to aggregate convection, which we attribute to the high density of convective moisture sources and the role of wind shear. Instead, in winter and spring, a weak meridional SST gradient exists and convection is usually clustered over the regions of warmer SSTs, with significant meridional humidity gradients. However, this is sporadically interrupted by episodes of convection migration to the coldest SSTs and limited spatial humidity variance. These episodes are the result of westward propagating equatorial waves, which remove meridional humidity gradients. It appears that the drivers of mesoscale convective clustering and humidity variability in the Pacific warm pool are the SST gradients, shear, and equatorial wave dynamics.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"52 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-024-00848-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
We examine mesoscale convective organisation in the tropical western Pacific using a multivariate analysis of column humidity, precipitation and sea surface temperature (SST) observations. We demonstrate that in boreal summer and autumn, convection remains spatially random despite radiative-feedbacks acting to aggregate convection, which we attribute to the high density of convective moisture sources and the role of wind shear. Instead, in winter and spring, a weak meridional SST gradient exists and convection is usually clustered over the regions of warmer SSTs, with significant meridional humidity gradients. However, this is sporadically interrupted by episodes of convection migration to the coldest SSTs and limited spatial humidity variance. These episodes are the result of westward propagating equatorial waves, which remove meridional humidity gradients. It appears that the drivers of mesoscale convective clustering and humidity variability in the Pacific warm pool are the SST gradients, shear, and equatorial wave dynamics.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.