Phonon-photon synergy in phase change materials through nano-engineered carbon materials for multifunctional applications

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Man Mohan, Vishesh Manjunath, Syed Muhammad Zain Mehdi, Sourabh Kumar Soni, Sheetal Kumar Dewangan, Hansung Lee, Abhishek Awasthi, Vinod Kumar Sharma, Abhishek Sharma, Eunhyo Song, Naesung Lee, Jaeyeong Heo, Kwan Lee, Byungmin Ahn
{"title":"Phonon-photon synergy in phase change materials through nano-engineered carbon materials for multifunctional applications","authors":"Man Mohan, Vishesh Manjunath, Syed Muhammad Zain Mehdi, Sourabh Kumar Soni, Sheetal Kumar Dewangan, Hansung Lee, Abhishek Awasthi, Vinod Kumar Sharma, Abhishek Sharma, Eunhyo Song, Naesung Lee, Jaeyeong Heo, Kwan Lee, Byungmin Ahn","doi":"10.1016/j.ensm.2025.104142","DOIUrl":null,"url":null,"abstract":"In the development of multifunctional phase change materials (PCMs), thermal conductivity, and photothermal conversion efficiency are particularly important factors affecting their performance. This paper thus reviews the thermophysical properties and synthesis of PCM composites, with a particular focus on the superiority of nano-engineered carbon materials (NeCMs) as a means to enhance PCM functionality. Techniques used to synthesize 0D, 1D, 2D, and 3D NeCMs and the atomic-level properties that influence their performance are described in relation to their dimensionality. The interactions that occur between NeCMs and PCMs, which are critical for multifunctionality of PCM composites, are also discussed. As a core objective, this review examines how the synthesis approaches for PCM-NeCM composites and their resulting morphological characteristics influence their thermal conductivity and photothermal efficiency. Phonon manipulation, localized heating, localized surface plasmon resonance, and interfacial thermal resistance (ITR) are identified as the key mechanisms that enhance thermal conduction and photothermal conversion of PCMs with the integration of NeCMs. Recent advancements are also highlighted to demonstrate the potential of these composites to optimize PCM technology for high-efficiency, multifunctional applications. This review ends by outlining the limitations and challenges associated with PCM, thus providing a framework for future advancements in PCM technology.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"21 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2025.104142","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the development of multifunctional phase change materials (PCMs), thermal conductivity, and photothermal conversion efficiency are particularly important factors affecting their performance. This paper thus reviews the thermophysical properties and synthesis of PCM composites, with a particular focus on the superiority of nano-engineered carbon materials (NeCMs) as a means to enhance PCM functionality. Techniques used to synthesize 0D, 1D, 2D, and 3D NeCMs and the atomic-level properties that influence their performance are described in relation to their dimensionality. The interactions that occur between NeCMs and PCMs, which are critical for multifunctionality of PCM composites, are also discussed. As a core objective, this review examines how the synthesis approaches for PCM-NeCM composites and their resulting morphological characteristics influence their thermal conductivity and photothermal efficiency. Phonon manipulation, localized heating, localized surface plasmon resonance, and interfacial thermal resistance (ITR) are identified as the key mechanisms that enhance thermal conduction and photothermal conversion of PCMs with the integration of NeCMs. Recent advancements are also highlighted to demonstrate the potential of these composites to optimize PCM technology for high-efficiency, multifunctional applications. This review ends by outlining the limitations and challenges associated with PCM, thus providing a framework for future advancements in PCM technology.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信