{"title":"Plasmon Mediated Photocatalysis: Engineering Interfaces for Effective Hot Carrier Utilization","authors":"Xinyuan Li, Bohan Wu, Xurui Zhang, Akang Chen, Jiale Wang, Honglei Wang, Artur Ciesielski, Jia Liu, Jiatao Zhang","doi":"10.1021/acsenergylett.5c00090","DOIUrl":null,"url":null,"abstract":"Plasmonic metal/semiconductor hetero-nanostructures have attracted tremendous research interests in optoelectronic devices, photocatalysis and photothermal therapy, and related fields. Among various mechanisms of localized surface plasmon resonance (LSPR) induced enhancements, the mechanism of LSPR-induced hot carrier injection has emerged as a particularly powerful and efficient process for modulating charge dynamics, especially in photocatalysis. The efficiency of these hot carrier injections relies on robust metal–semiconductor interfaces, with performance heavily influenced by the composition, crystallinity, and atomic structure of the multi-interfaces involved. This letter explores the mechanisms of LSPR-induced hot carrier injection, highlighting recent advances with emphasis on multi-interfacial engineering to optimize charge dynamics and utilization. These interface-regulated hot carrier processes, combined with enhanced photocatalytic performance, provide new opportunities for further advanced photocatalysis and a wide range of photoelectric conversion applications.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"26 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.5c00090","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Plasmonic metal/semiconductor hetero-nanostructures have attracted tremendous research interests in optoelectronic devices, photocatalysis and photothermal therapy, and related fields. Among various mechanisms of localized surface plasmon resonance (LSPR) induced enhancements, the mechanism of LSPR-induced hot carrier injection has emerged as a particularly powerful and efficient process for modulating charge dynamics, especially in photocatalysis. The efficiency of these hot carrier injections relies on robust metal–semiconductor interfaces, with performance heavily influenced by the composition, crystallinity, and atomic structure of the multi-interfaces involved. This letter explores the mechanisms of LSPR-induced hot carrier injection, highlighting recent advances with emphasis on multi-interfacial engineering to optimize charge dynamics and utilization. These interface-regulated hot carrier processes, combined with enhanced photocatalytic performance, provide new opportunities for further advanced photocatalysis and a wide range of photoelectric conversion applications.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.